MATLAB/Octave - Segment Display 4x7 Bricklet

This is the description of the MATLAB/Octave API bindings for the Segment Display 4x7 Bricklet. General information and technical specifications for the Segment Display 4x7 Bricklet are summarized in its hardware description.

An installation guide for the MATLAB/Octave API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple (MATLAB)

Download (matlab_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
function matlab_example_simple()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletSegmentDisplay4x7;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Segment Display 4x7 Bricklet
    DIGITS = [hex2dec('3f') hex2dec('06') hex2dec('5b') ...
              hex2dec('4f') hex2dec('66') hex2dec('6d') ...
              hex2dec('7d') hex2dec('07') hex2dec('7f') ...
              hex2dec('6f') hex2dec('77') hex2dec('7c') ...
              hex2dec('39') hex2dec('5e') hex2dec('79') ...
              hex2dec('71')]; % 0~9,A,b,C,d,E,F

    ipcon = IPConnection(); % Create IP connection
    sd = handle(BrickletSegmentDisplay4x7(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Write "4223" to the display with full brightness without colon.
    % Adding 1 with the index because the array was designed for arrays
    % that starts with index 0 but MATLAB arrays start with index 1.
    segments = [DIGITS(4+1) DIGITS(2+1) DIGITS(2+1) DIGITS(3+1)];
    sd.setSegments(segments, 7, false);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

Simple (Octave)

Download (octave_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
function octave_example_simple()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Segment Display 4x7 Bricklet
    DIGITS = [hex2dec("3f") hex2dec("06") hex2dec("5b") ...
              hex2dec("4f") hex2dec("66") hex2dec("6d") ...
              hex2dec("7d") hex2dec("07") hex2dec("7f") ...
              hex2dec("6f") hex2dec("77") hex2dec("7c") ...
              hex2dec("39") hex2dec("5e") hex2dec("79") ...
              hex2dec("71")]; % 0~9,A,b,C,d,E,F

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    sd = javaObject("com.tinkerforge.BrickletSegmentDisplay4x7", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Write "4223" to the display with full brightness without colon.
    % Adding 1 with the index because the array was designed for arrays
    % that starts with index 0 but Octave arrays start with index 1.
    segments = [DIGITS(4+1) DIGITS(2+1) DIGITS(2+1) DIGITS(3+1)];
    sd.setSegments(segments, 7, false);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

API

Generally, every method of the MATLAB bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since the MATLAB bindings are based on Java and Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletSegmentDisplay4x7(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • segmentDisplay4x7 – Type: BrickletSegmentDisplay4x7

Creates an object with the unique device ID uid.

In MATLAB:

import com.tinkerforge.BrickletSegmentDisplay4x7;

segmentDisplay4x7 = BrickletSegmentDisplay4x7('YOUR_DEVICE_UID', ipcon);

In Octave:

segmentDisplay4x7 = java_new("com.tinkerforge.BrickletSegmentDisplay4x7", "YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

void BrickletSegmentDisplay4x7.setSegments(short[] segments, short brightness, boolean colon)
Parameters:
  • segments – Type: short[], Length: 4, Range: [0 to 127]
  • brightness – Type: short, Range: [0 to 7]
  • colon – Type: boolean

The 7-segment display can be set with bitmaps. Every bit controls one segment:

Bit order of one segment

For example to set a "5" you would want to activate segments 0, 2, 3, 5 and 6. This is represented by the number 0b01101101 = 0x6d = 109.

The brightness can be set between 0 (dark) and 7 (bright). The colon parameter turns the colon of the display on or off.

BrickletSegmentDisplay4x7.Segments BrickletSegmentDisplay4x7.getSegments()
Return Object:
  • segments – Type: short[], Length: 4, Range: [0 to 127]
  • brightness – Type: short, Range: [0 to 7]
  • colon – Type: boolean

Returns the segment, brightness and color data as set by setSegments().

Advanced Functions

void BrickletSegmentDisplay4x7.startCounter(short valueFrom, short valueTo, short increment, long length)
Parameters:
  • valueFrom – Type: short, Range: [-999 to 9999]
  • valueTo – Type: short, Range: [-999 to 9999]
  • increment – Type: short, Range: [-999 to 9999]
  • length – Type: long, Unit: 1 ms, Range: [0 to 232 - 1]

Starts a counter with the from value that counts to the to value with the each step incremented by increment. length is the pause between each increment.

Example: If you set from to 0, to to 100, increment to 1 and length to 1000, a counter that goes from 0 to 100 with one second pause between each increment will be started.

Using a negative increment allows to count backwards.

You can stop the counter at every time by calling setSegments().

int BrickletSegmentDisplay4x7.getCounterValue()
Returns:
  • value – Type: int, Range: [-999 to 9999]

Returns the counter value that is currently shown on the display.

If there is no counter running a 0 will be returned.

BrickletSegmentDisplay4x7.Identity BrickletSegmentDisplay4x7.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with "set" function of MATLAB. The parameters consist of the IP Connection object, the callback name and the callback function. For example, it looks like this in MATLAB:

function my_callback(e)
    fprintf('Parameter: %s\n', e.param);
end

set(device, 'ExampleCallback', @(h, e) my_callback(e));

Due to a difference in the Octave Java support the "set" function cannot be used in Octave. The registration is done with "add*Callback" functions of the device object. It looks like this in Octave:

function my_callback(e)
    fprintf("Parameter: %s\n", e.param);
end

device.addExampleCallback(@my_callback);

It is possible to add several callbacks and to remove them with the corresponding "remove*Callback" function.

The parameters of the callback are passed to the callback function as fields of the structure e, which is derived from the java.util.EventObject class. The available callback names with corresponding structure fields are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

callback BrickletSegmentDisplay4x7.CounterFinishedCallback
Event Object:
  • empty object

This callback is triggered when the counter (see startCounter()) is finished.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addCounterFinishedCallback() function. An added callback function can be removed with the removeCounterFinishedCallback() function.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

short[] BrickletSegmentDisplay4x7.getAPIVersion()
Return Object:
  • apiVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletSegmentDisplay4x7.getResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletSegmentDisplay4x7.FUNCTION_SET_SEGMENTS = 1
  • BrickletSegmentDisplay4x7.FUNCTION_START_COUNTER = 3
void BrickletSegmentDisplay4x7.setResponseExpected(byte functionId, boolean responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletSegmentDisplay4x7.FUNCTION_SET_SEGMENTS = 1
  • BrickletSegmentDisplay4x7.FUNCTION_START_COUNTER = 3
void BrickletSegmentDisplay4x7.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Constants

int BrickletSegmentDisplay4x7.DEVICE_IDENTIFIER

This constant is used to identify a Segment Display 4x7 Bricklet.

The getIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickletSegmentDisplay4x7.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Segment Display 4x7 Bricklet.