Delphi/Lazarus - DC Brick

Dies ist die Beschreibung der Delphi/Lazarus API Bindings für den DC Brick. Allgemeine Informationen über die Funktionen und technischen Spezifikationen des DC Brick sind in dessen Hardware Beschreibung zusammengefasst.

Eine Installationanleitung für die Delphi/Lazarus API Bindings ist Teil deren allgemeine Beschreibung.

Beispiele

Der folgende Beispielcode ist Public Domain (CC0 1.0).

Configuration

Download (ExampleConfiguration.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
program ExampleConfiguration;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickDC;

type
  TExample = class
  private
    ipcon: TIPConnection;
    dc: TBrickDC;
  public
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XXYYZZ'; { Change XXYYZZ to the UID of your DC Brick }

var
  e: TExample;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  dc := TBrickDC.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  dc.SetDriveMode(BRICK_DC_DRIVE_MODE_DRIVE_COAST);
  dc.SetPWMFrequency(10000); { Use PWM frequency of 10kHz }
  dc.SetAcceleration(5000); { Slow acceleration }
  dc.SetVelocity(32767); { Full speed forward }
  dc.Enable; { Enable motor power }

  WriteLn('Press key to exit');
  ReadLn;
  dc.Disable; { Disable motor power }
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

Callback

Download (ExampleCallback.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
program ExampleCallback;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickDC;

type
  TExample = class
  private
    ipcon: TIPConnection;
    dc: TBrickDC;
  public
    procedure VelocityReachedCB(sender: TBrickDC; const velocity: smallint);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XXYYZZ'; { Change XXYYZZ to the UID of your DC Brick }

var
  e: TExample;

{ Use velocity reached callback to swing back and forth
  between full speed forward and full speed backward }
procedure TExample.VelocityReachedCB(sender: TBrickDC; const velocity: smallint);
begin
  if (velocity = 32767) then begin
    WriteLn('Velocity: Full speed forward, now turning backward');
    sender.SetVelocity(-32767);
  end
  else if (velocity = -32767) then begin
    WriteLn('Velocity: Full speed backward, now turning forward');
    sender.SetVelocity(32767);
  end
  else begin
    WriteLn('Error'); { Can only happen if another program sets velocity }
  end;
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  dc := TBrickDC.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { The acceleration has to be smaller or equal to the maximum
    acceleration of the DC motor, otherwise the velocity reached
    callback will be called too early }
  dc.SetAcceleration(5000); { Slow acceleration }
  dc.SetVelocity(32767); { Full speed forward }

  { Register velocity reached callback to procedure VelocityReachedCB }
  dc.OnVelocityReached := {$ifdef FPC}@{$endif}VelocityReachedCB;

  { Enable motor power }
  dc.Enable;

  WriteLn('Press key to exit');
  ReadLn;
  dc.Disable; { Disable motor power }
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

API

Da Delphi nicht mehrere Rückgabewerte direkt unterstützt, wird das out Schlüsselwort genutzt um mehrere Werte von einer Funktion zurückzugeben.

Alle folgend aufgelisteten Funktionen und Prozeduren sind Thread-sicher.

Grundfunktionen

constructor TBrickDC.Create(const uid: string; ipcon: TIPConnection)
Parameter:
  • uid – Typ: string
  • ipcon – Typ: TIPConnection
Rückgabe:
  • dc – Typ: TBrickDC

Erzeugt ein Objekt mit der eindeutigen Geräte ID uid:

dc := TBrickDC.Create('YOUR_DEVICE_UID', ipcon);

Dieses Objekt kann benutzt werden, nachdem die IP Connection verbunden ist (siehe Beispiele oben).

procedure TBrickDC.SetVelocity(const velocity: smallint)
Parameter:
  • velocity – Typ: smallint, Einheit: 100/32767 %, Wertebereich: [-32767 bis 215 - 1], Standardwert: 0

Setzt die Geschwindigkeit des Motors. Hierbei sind -32767 maximale Geschwindigkeit rückwärts, 0 ist Halt und 32767 maximale Geschwindigkeit vorwärts. In Abhängigkeit von der Beschleunigung (siehe SetAcceleration) wird der Motor nicht direkt auf die Geschwindigkeit gebracht sondern gleichmäßig beschleunigt.

Die Geschwindigkeit beschreibt das Tastverhältnis der PWM für die Motoransteuerung. Z.B. entspricht ein Geschwindigkeitswert von 3277 einer PWM mit einem Tastverhältnis von 10%. Weiterhin kann neben dem Tastverhältnis auch die Frequenz der PWM verändert werden, siehe SetPWMFrequency.

function TBrickDC.GetVelocity: smallint
Rückgabe:
  • velocity – Typ: smallint, Einheit: 100/32767 %, Wertebereich: [-32767 bis 215 - 1], Standardwert: 0

Gibt die Geschwindigkeit zurück, wie gesetzt von SetVelocity.

function TBrickDC.GetCurrentVelocity: smallint
Rückgabe:
  • velocity – Typ: smallint, Einheit: 100/32767 %, Wertebereich: [-32767 bis 215 - 1], Standardwert: 0

Gibt die aktuelle Geschwindigkeit des Motors zurück. Dieser Wert unterscheidet sich von GetVelocity, sobald der Motor auf einen neuen Zielwert, wie von SetVelocity vorgegeben, beschleunigt.

procedure TBrickDC.SetAcceleration(const acceleration: word)
Parameter:
  • acceleration – Typ: word, Einheit: 100/32767 %, Wertebereich: [0 bis 216 - 1], Standardwert: 10000

Setzt die Beschleunigung des Motors. Die Einheit dieses Wertes ist Geschwindigkeit/s. Ein Beschleunigungswert von 10000 bedeutet, dass jede Sekunde die Geschwindigkeit um 10000 erhöht wird (entspricht rund 30% Tastverhältnis).

Beispiel: Soll die Geschwindigkeit von 0 auf 16000 (entspricht ungefähr 50% Tastverhältnis) in 10 Sekunden beschleunigt werden, so ist die Beschleunigung auf 1600 einzustellen.

Eine Beschleunigung von 0 bedeutet ein direkter Sprung des Motors auf die Zielgeschwindigkeit. Es Wird keine Beschleunigungsrampe gefahren.

function TBrickDC.GetAcceleration: word
Rückgabe:
  • acceleration – Typ: word, Einheit: 100/32767 %, Wertebereich: [0 bis 216 - 1], Standardwert: 10000

Gibt die Beschleunigung zurück, wie gesetzt von SetAcceleration.

procedure TBrickDC.FullBrake

Führt eine aktive Vollbremsung aus.

Warnung

Diese Funktion ist für Notsituationen bestimmt, in denen ein unverzüglicher Halt notwendig ist. Abhängig von der aktuellen Geschwindigkeit und der Kraft des Motors kann eine Vollbremsung brachial sein.

Ein Aufruf von SetVelocity mit 0 erlaubt einen normalen Stopp des Motors.

procedure TBrickDC.Enable

Aktiviert die Treiberstufe. Die Treiberparameter können vor der Aktivierung konfiguriert werden (Geschwindigkeit, Beschleunigung, etc.).

procedure TBrickDC.Disable

Deaktiviert die Treiberstufe. Die Konfiguration (Geschwindigkeit, Beschleunigung, etc.) bleibt erhalten aber der Motor wird nicht angesteuert bis eine erneute Aktivierung erfolgt.

function TBrickDC.IsEnabled: boolean
Rückgabe:
  • enabled – Typ: boolean, Standardwert: false

Gibt true zurück wenn die Treiberstufe aktiv ist, sonst false.

Fortgeschrittene Funktionen

procedure TBrickDC.SetPWMFrequency(const frequency: word)
Parameter:
  • frequency – Typ: word, Einheit: 1 Hz, Wertebereich: [1 bis 20000], Standardwert: 15000

Setzt die Frequenz der PWM, welche den Motor steuert. Oftmals ist eine hohe Frequenz geräuschärmer und der Motor läuft dadurch ruhiger. Trotz dessen führt eine geringe Frequenz zu weniger Schaltvorgängen und somit zu weniger Schaltverlusten. Bei einer Vielzahl von Motoren ermöglichen geringere Frequenzen höhere Drehmomente.

Im Allgemeinen kann diese Funktion ignoriert werden, da der Standardwert höchstwahrscheinlich zu einem akzeptablen Ergebnis führt.

function TBrickDC.GetPWMFrequency: word
Rückgabe:
  • frequency – Typ: word, Einheit: 1 Hz, Wertebereich: [1 bis 20000], Standardwert: 15000

Gibt die PWM Frequenz zurück, wie gesetzt von SetPWMFrequency.

function TBrickDC.GetStackInputVoltage: word
Rückgabe:
  • voltage – Typ: word, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]

Gibt die Eingangsspannung des Stapels zurück. Die Eingangsspannung des Stapel wird über diesen bereitgestellt und von einer Step-Down oder Step-Up Power Supply erzeugt.

function TBrickDC.GetExternalInputVoltage: word
Rückgabe:
  • voltage – Typ: word, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]

Gibt die externe Eingangsspannung zurück. Die externe Eingangsspannung wird über die schwarze Stromversorgungsbuchse, in den DC Brick, eingespeist.

Sobald eine externe Eingangsspannung und die Spannungsversorgung des Stapels anliegt, wird der Motor über die externe Spannung versorgt. Sollte nur die Spannungsversorgung des Stapels verfügbar sein, erfolgt die Versorgung des Motors über diese.

Warnung

Das bedeutet, bei einer hohen Versorgungsspannung des Stapels und einer geringen externen Versorgungsspannung erfolgt die Spannungsversorgung des Motors über die geringere externe Versorgungsspannung. Wenn dann die externe Spannungsversorgung getrennt wird, erfolgt sofort die Versorgung des Motors über die höhere Versorgungsspannung des Stapels.

function TBrickDC.GetCurrentConsumption: word
Rückgabe:
  • voltage – Typ: word, Einheit: 1 mA, Wertebereich: [0 bis 216 - 1]

Gibt die Stromaufnahme des Motors zurück.

procedure TBrickDC.SetDriveMode(const mode: byte)
Parameter:
  • mode – Typ: byte, Wertebereich: Siehe Konstanten, Standardwert: 0

Setzt den Fahrmodus. Verfügbare Modi sind:

  • 0 = Fahren/Bremsen
  • 1 = Fahren/Leerlauf

Diese Modi sind verschiedene Arten der Motoransteuerung.

Im Fahren/Bremsen Modus wird der Motor entweder gefahren oder gebremst. Es gibt keinen Leerlauf. Vorteile sind die lineare Korrelation zwischen PWM und Geschwindigkeit, präzisere Beschleunigungen und die Möglichkeit mit geringeren Geschwindigkeiten zu fahren.

Im Fahren/Leerlauf Modus wir der Motor entweder gefahren oder befindet sich im Leerlauf. Vorteile sind die geringere Stromaufnahme und geringere Belastung des Motors und der Treiberstufe.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für mode:

  • BRICK_DC_DRIVE_MODE_DRIVE_BRAKE = 0
  • BRICK_DC_DRIVE_MODE_DRIVE_COAST = 1
function TBrickDC.GetDriveMode: byte
Rückgabe:
  • mode – Typ: byte, Wertebereich: Siehe Konstanten, Standardwert: 0

Gibt den Fahrmodus zurück, wie von SetDriveMode gesetzt.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für mode:

  • BRICK_DC_DRIVE_MODE_DRIVE_BRAKE = 0
  • BRICK_DC_DRIVE_MODE_DRIVE_COAST = 1
procedure TBrickDC.SetSPITFPBaudrateConfig(const enableDynamicBaudrate: boolean; const minimumDynamicBaudrate: longword)
Parameter:
  • enableDynamicBaudrate – Typ: boolean, Standardwert: true
  • minimumDynamicBaudrate – Typ: longword, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 400000

Das SPITF-Protokoll kann mit einer dynamischen Baudrate genutzt werden. Wenn die dynamische Baudrate aktiviert ist, versucht der Brick die Baudrate anhand des Datenaufkommens zwischen Brick und Bricklet anzupassen.

Die Baudrate wird exponentiell erhöht wenn viele Daten gesendet/empfangen werden und linear verringert wenn wenig Daten gesendet/empfangen werden.

Diese Vorgehensweise verringert die Baudrate in Anwendungen wo nur wenig Daten ausgetauscht werden müssen (z.B. eine Wetterstation) und erhöht die Robustheit. Wenn immer viele Daten ausgetauscht werden (z.B. Thermal Imaging Bricklet), wird die Baudrate automatisch erhöht.

In Fällen wo wenige Daten all paar Sekunden so schnell wie Möglich übertragen werden sollen (z.B. RS485 Bricklet mit hoher Baudrate aber kleinem Payload) kann die dynamische Baudrate zum maximieren der Performance ausgestellt werden.

Die maximale Baudrate kann pro Port mit der Funktion SetSPITFPBaudrate. gesetzt werden. Falls die dynamische Baudrate nicht aktiviert ist, wird die Baudrate wie von SetSPITFPBaudrate gesetzt statisch verwendet.

Neu in Version 2.3.5 (Firmware).

procedure TBrickDC.GetSPITFPBaudrateConfig(out enableDynamicBaudrate: boolean; out minimumDynamicBaudrate: longword)
Ausgabeparameter:
  • enableDynamicBaudrate – Typ: boolean, Standardwert: true
  • minimumDynamicBaudrate – Typ: longword, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 400000

Gibt die Baudratenkonfiguration zurück, siehe SetSPITFPBaudrateConfig.

Neu in Version 2.3.5 (Firmware).

function TBrickDC.GetSendTimeoutCount(const communicationMethod: byte): longword
Parameter:
  • communicationMethod – Typ: byte, Wertebereich: Siehe Konstanten
Rückgabe:
  • timeoutCount – Typ: longword, Wertebereich: [0 bis 232 - 1]

Gibt den Timeout-Zähler für die verschiedenen Kommunikationsmöglichkeiten zurück

Die Kommunikationsmöglichkeiten 0-2 stehen auf allen Bricks zur verfügung, 3-7 nur auf Master Bricks.

Diese Funktion ist hauptsächlich zum debuggen während der Entwicklung gedacht. Im normalen Betrieb sollten alle Zähler fast immer auf 0 stehen bleiben.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für communicationMethod:

  • BRICK_DC_COMMUNICATION_METHOD_NONE = 0
  • BRICK_DC_COMMUNICATION_METHOD_USB = 1
  • BRICK_DC_COMMUNICATION_METHOD_SPI_STACK = 2
  • BRICK_DC_COMMUNICATION_METHOD_CHIBI = 3
  • BRICK_DC_COMMUNICATION_METHOD_RS485 = 4
  • BRICK_DC_COMMUNICATION_METHOD_WIFI = 5
  • BRICK_DC_COMMUNICATION_METHOD_ETHERNET = 6
  • BRICK_DC_COMMUNICATION_METHOD_WIFI_V2 = 7

Neu in Version 2.3.3 (Firmware).

procedure TBrickDC.SetSPITFPBaudrate(const brickletPort: char; const baudrate: longword)
Parameter:
  • brickletPort – Typ: char, Wertebereich: ['a' bis 'b']
  • baudrate – Typ: longword, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 1400000

Setzt die Baudrate eines spezifischen Bricklet Ports .

Für einen höheren Durchsatz der Bricklets kann die Baudrate erhöht werden. Wenn der Fehlerzähler auf Grund von lokaler Störeinstrahlung hoch ist (siehe GetSPITFPErrorCount) kann die Baudrate verringert werden.

Wenn das Feature der dynamische Baudrate aktiviert ist, setzt diese Funktion die maximale Baudrate (siehe SetSPITFPBaudrateConfig).

EMV Tests werden mit der Standardbaudrate durchgeführt. Falls eine CE-Kompatibilität o.ä. in der Anwendung notwendig ist empfehlen wir die Baudrate nicht zu ändern.

Neu in Version 2.3.3 (Firmware).

function TBrickDC.GetSPITFPBaudrate(const brickletPort: char): longword
Parameter:
  • brickletPort – Typ: char, Wertebereich: ['a' bis 'b']
Rückgabe:
  • baudrate – Typ: longword, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 1400000

Gibt die Baudrate für einen Bricklet Port zurück, siehe SetSPITFPBaudrate.

Neu in Version 2.3.3 (Firmware).

procedure TBrickDC.GetSPITFPErrorCount(const brickletPort: char; out errorCountACKChecksum: longword; out errorCountMessageChecksum: longword; out errorCountFrame: longword; out errorCountOverflow: longword)
Parameter:
  • brickletPort – Typ: char, Wertebereich: ['a' bis 'b']
Ausgabeparameter:
  • errorCountACKChecksum – Typ: longword, Wertebereich: [0 bis 232 - 1]
  • errorCountMessageChecksum – Typ: longword, Wertebereich: [0 bis 232 - 1]
  • errorCountFrame – Typ: longword, Wertebereich: [0 bis 232 - 1]
  • errorCountOverflow – Typ: longword, Wertebereich: [0 bis 232 - 1]

Gibt die Anzahl der Fehler die während der Kommunikation zwischen Brick und Bricklet aufgetreten sind zurück.

Die Fehler sind aufgeteilt in

  • ACK-Checksummen Fehler,
  • Message-Checksummen Fehler,
  • Framing Fehler und
  • Overflow Fehler.

Die Fehlerzähler sind für Fehler die auf der Seite des Bricks auftreten. Jedes Bricklet hat eine ähnliche Funktion welche die Fehler auf Brickletseite ausgibt.

Neu in Version 2.3.3 (Firmware).

procedure TBrickDC.EnableStatusLED

Aktiviert die Status LED.

Die Status LED ist die blaue LED neben dem USB-Stecker. Wenn diese aktiviert ist, ist sie an und sie flackert wenn Daten transferiert werden. Wenn sie deaktiviert ist, ist sie immer aus.

Der Standardzustand ist aktiviert.

Neu in Version 2.3.1 (Firmware).

procedure TBrickDC.DisableStatusLED

Deaktiviert die Status LED.

Die Status LED ist die blaue LED neben dem USB-Stecker. Wenn diese aktiviert ist, ist sie an und sie flackert wenn Daten transferiert werden. Wenn sie deaktiviert ist, ist sie immer aus.

Der Standardzustand ist aktiviert.

Neu in Version 2.3.1 (Firmware).

function TBrickDC.IsStatusLEDEnabled: boolean
Rückgabe:
  • enabled – Typ: boolean, Standardwert: true

Gibt true zurück wenn die Status LED aktiviert ist, false sonst.

Neu in Version 2.3.1 (Firmware).

procedure TBrickDC.GetProtocol1BrickletName(const port: char; out protocolVersion: byte; out firmwareVersion: array [0..2] of byte; out name: string)
Parameter:
  • port – Typ: char, Wertebereich: ['a' bis 'b']
Ausgabeparameter:
  • protocolVersion – Typ: byte, Wertebereich: [0 bis 255]
  • firmwareVersion – Typ: array [0..2] of byte
    • 0: major – Typ: byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: byte, Wertebereich: [0 bis 255]
  • name – Typ: string, Länge: bis zu 40

Gibt die Firmware und Protokoll Version und den Namen des Bricklets für einen gegebenen Port zurück.

Der einzige Zweck dieser Funktion ist es, automatischen Flashen von Bricklet v1.x.y Plugins zu ermöglichen.

function TBrickDC.GetChipTemperature: smallint
Rückgabe:
  • temperature – Typ: smallint, Einheit: 1/10 °C, Wertebereich: [-215 bis 215 - 1]

Gibt die Temperatur, gemessen im Mikrocontroller, aus. Der Rückgabewert ist nicht die Umgebungstemperatur.

Die Temperatur ist lediglich proportional zur echten Temperatur und hat eine Genauigkeit von ±15%. Daher beschränkt sich der praktische Nutzen auf die Indikation von Temperaturveränderungen.

procedure TBrickDC.Reset

Ein Aufruf dieser Funktion setzt den Brick zurück. Befindet sich der Brick innerhalb eines Stapels wird der gesamte Stapel zurück gesetzt.

Nach dem Zurücksetzen ist es notwendig neue Geräteobjekte zu erzeugen, Funktionsaufrufe auf bestehende führt zu undefiniertem Verhalten.

procedure TBrickDC.GetIdentity(out uid: string; out connectedUid: string; out position: char; out hardwareVersion: array [0..2] of byte; out firmwareVersion: array [0..2] of byte; out deviceIdentifier: word)
Ausgabeparameter:
  • uid – Typ: string, Länge: bis zu 8
  • connectedUid – Typ: string, Länge: bis zu 8
  • position – Typ: char, Wertebereich: ['0' bis '8']
  • hardwareVersion – Typ: array [0..2] of byte
    • 0: major – Typ: byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: byte, Wertebereich: [0 bis 255]
  • firmwareVersion – Typ: array [0..2] of byte
    • 0: major – Typ: byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: byte, Wertebereich: [0 bis 255]
  • deviceIdentifier – Typ: word, Wertebereich: [0 bis 216 - 1]

Gibt die UID, die UID zu der der Brick verbunden ist, die Position, die Hard- und Firmware Version sowie den Device Identifier zurück.

Die Position ist die Position im Stack von '0' (unterster Brick) bis '8' (oberster Brick).

Eine Liste der Device Identifier Werte ist hier zu finden. Es gibt auch eine Konstante für den Device Identifier dieses Bricks.

Konfigurationsfunktionen für Callbacks

procedure TBrickDC.SetMinimumVoltage(const voltage: word)
Parameter:
  • voltage – Typ: word, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1], Standardwert: 6000

Setzt die minimale Spannung, bei welcher der OnUnderVoltage Callback ausgelöst wird. Der kleinste mögliche Wert mit dem der DC Brick noch funktioniert, ist 6V. Mit dieser Funktion kann eine Entladung der versorgenden Batterie detektiert werden. Beim Einsatz einer Netzstromversorgung wird diese Funktionalität höchstwahrscheinlich nicht benötigt.

function TBrickDC.GetMinimumVoltage: word
Rückgabe:
  • voltage – Typ: word, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1], Standardwert: 6000

Gibt die minimale Spannung zurück, wie von SetMinimumVoltage gesetzt.

procedure TBrickDC.SetCurrentVelocityPeriod(const period: word)
Parameter:
  • period – Typ: word, Einheit: 1 ms, Wertebereich: [0 bis 216 - 1], Standardwert: 0

Setzt die Periode mit welcher der OnCurrentVelocity Callback ausgelöst wird. Ein Wert von 0 deaktiviert den Callback.

function TBrickDC.GetCurrentVelocityPeriod: word
Rückgabe:
  • period – Typ: word, Einheit: 1 ms, Wertebereich: [0 bis 216 - 1], Standardwert: 0

Gibt die Periode zurück, wie von SetCurrentVelocityPeriod gesetzt.

Callbacks

Callbacks können registriert werden um zeitkritische oder wiederkehrende Daten vom Gerät zu erhalten. Die Registrierung erfolgt indem eine Prozedur einem Callback Property des Geräte Objektes zugewiesen wird:

procedure TExample.MyCallback(sender: TBrickDC; const value: longint);
begin
  WriteLn(Format('Value: %d', [value]));
end;

dc.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;

Die verfügbaren Callback Properties und ihre Parametertypen werden weiter unten beschrieben.

Bemerkung

Callbacks für wiederkehrende Ereignisse zu verwenden ist immer zu bevorzugen gegenüber der Verwendung von Abfragen. Es wird weniger USB-Bandbreite benutzt und die Latenz ist erheblich geringer, da es keine Paketumlaufzeit gibt.

property TBrickDC.OnUnderVoltage
procedure(sender: TBrickDC; const voltage: word) of object;
Callback-Parameter:
  • sender – Typ: TBrickDC
  • voltage – Typ: word, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]

Dieser Callback wird ausgelöst, wenn die Eingangsspannung unter den, mittels SetMinimumVoltage gesetzten, Schwellwert sinkt. Der Parameter ist die aktuelle Spannung.

property TBrickDC.OnEmergencyShutdown
procedure(sender: TBrickDC) of object;
Callback-Parameter:
  • sender – Typ: TBrickDC

Dieser Callback wird ausgelöst, wenn entweder der Stromverbrauch (über 5A) oder die Temperatur der Treiberstufe zu hoch ist (über 175°C). Beide Möglichkeiten sind letztendlich gleichbedeutend, da die Temperatur ihren Schwellwert überschreitet sobald der Motor zu viel Strom verbraucht. Im Falle einer Spannung unter 3,3V (Stapel- oder externe Spannungsversorgung) wird dieser Callback auch ausgelöst.

Sobald dieser Callback ausgelöst wird, wird die Treiberstufe deaktiviert. Das bedeutet Enable muss aufgerufen werden, um den Motor erneut zu fahren.

Bemerkung

Dieser Callback funktioniert nur im Fahren/Bremsen Modus (siehe SetDriveMode). Im Fahren/Leerlauf Modus ist es leider nicht möglich das Überstrom/Übertemperatur-Signal zuverlässig aus dem Chip der Treiberstufe auszulesen.

property TBrickDC.OnVelocityReached
procedure(sender: TBrickDC; const velocity: smallint) of object;
Callback-Parameter:
  • sender – Typ: TBrickDC
  • velocity – Typ: smallint, Einheit: 100/32767 %, Wertebereich: [-32767 bis 215 - 1]

Dieser Callback wird ausgelöst immer wenn eine konfigurierte Geschwindigkeit erreicht wird. Beispiel: Wenn die aktuelle Geschwindigkeit 0 ist, die Beschleunigung auf 5000 und die Geschwindigkeit auf 10000 konfiguriert ist, wird der OnVelocityReached Callback nach ungefähr 2 Sekunden ausgelöst, wenn die konfigurierte Geschwindigkeit letztendlich erreicht ist.

Bemerkung

Da es nicht möglich ist eine Rückmeldung vom Gleichstrommotor zu erhalten, funktioniert dies nur wenn die konfigurierte Beschleunigung (siehe SetAcceleration) kleiner oder gleich der maximalen Beschleunigung des Motors ist. Andernfalls wird der Motor hinter dem Vorgabewert zurückbleiben und der Callback wird zu früh ausgelöst.

property TBrickDC.OnCurrentVelocity
procedure(sender: TBrickDC; const velocity: smallint) of object;
Callback-Parameter:
  • sender – Typ: TBrickDC
  • velocity – Typ: smallint, Einheit: 100/32767 %, Wertebereich: [-32767 bis 215 - 1]

Dieser Callback wird mit der Periode, wie gesetzt mit SetCurrentVelocityPeriod, ausgelöst. Der Parameter ist die aktuelle vom Motor genutzte Geschwindigkeit.

Der OnCurrentVelocity Callback wird nur nach Ablauf der Periode ausgelöst, wenn sich die Geschwindigkeit geändert hat.

Virtuelle Funktionen

Virtuelle Funktionen kommunizieren nicht mit dem Gerät selbst, sie arbeiten nur auf dem API Bindings Objekt. Dadurch können sie auch aufgerufen werden, ohne das das dazugehörige IP Connection Objekt verbunden ist.

function TBrickDC.GetAPIVersion: array [0..2] of byte
Ausgabeparameter:
  • apiVersion – Typ: array [0..2] of byte
    • 0: major – Typ: byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: byte, Wertebereich: [0 bis 255]

Gibt die Version der API Definition zurück, die diese API Bindings implementieren. Dies ist weder die Release-Version dieser API Bindings noch gibt es in irgendeiner Weise Auskunft über den oder das repräsentierte(n) Brick oder Bricklet.

function TBrickDC.GetResponseExpected(const functionId: byte): boolean
Parameter:
  • functionId – Typ: byte, Wertebereich: Siehe Konstanten
Rückgabe:
  • responseExpected – Typ: boolean

Gibt das Response-Expected-Flag für die Funktion mit der angegebenen Funktions IDs zurück. Es ist true falls für die Funktion beim Aufruf eine Antwort erwartet wird, false andernfalls.

Für Getter-Funktionen ist diese Flag immer gesetzt und kann nicht entfernt werden, da diese Funktionen immer eine Antwort senden. Für Konfigurationsfunktionen für Callbacks ist es standardmäßig gesetzt, kann aber entfernt werden mittels SetResponseExpected. Für Setter-Funktionen ist es standardmäßig nicht gesetzt, kann aber gesetzt werden.

Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für functionId:

  • BRICK_DC_FUNCTION_SET_VELOCITY = 1
  • BRICK_DC_FUNCTION_SET_ACCELERATION = 4
  • BRICK_DC_FUNCTION_SET_PWM_FREQUENCY = 6
  • BRICK_DC_FUNCTION_FULL_BRAKE = 8
  • BRICK_DC_FUNCTION_ENABLE = 12
  • BRICK_DC_FUNCTION_DISABLE = 13
  • BRICK_DC_FUNCTION_SET_MINIMUM_VOLTAGE = 15
  • BRICK_DC_FUNCTION_SET_DRIVE_MODE = 17
  • BRICK_DC_FUNCTION_SET_CURRENT_VELOCITY_PERIOD = 19
  • BRICK_DC_FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BRICK_DC_FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BRICK_DC_FUNCTION_ENABLE_STATUS_LED = 238
  • BRICK_DC_FUNCTION_DISABLE_STATUS_LED = 239
  • BRICK_DC_FUNCTION_RESET = 243
procedure TBrickDC.SetResponseExpected(const functionId: byte; const responseExpected: boolean)
Parameter:
  • functionId – Typ: byte, Wertebereich: Siehe Konstanten
  • responseExpected – Typ: boolean

Ändert das Response-Expected-Flag für die Funktion mit der angegebenen Funktion IDs. Diese Flag kann nur für Setter-Funktionen (Standardwert: false) und Konfigurationsfunktionen für Callbacks (Standardwert: true) geändert werden. Für Getter-Funktionen ist das Flag immer gesetzt.

Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für functionId:

  • BRICK_DC_FUNCTION_SET_VELOCITY = 1
  • BRICK_DC_FUNCTION_SET_ACCELERATION = 4
  • BRICK_DC_FUNCTION_SET_PWM_FREQUENCY = 6
  • BRICK_DC_FUNCTION_FULL_BRAKE = 8
  • BRICK_DC_FUNCTION_ENABLE = 12
  • BRICK_DC_FUNCTION_DISABLE = 13
  • BRICK_DC_FUNCTION_SET_MINIMUM_VOLTAGE = 15
  • BRICK_DC_FUNCTION_SET_DRIVE_MODE = 17
  • BRICK_DC_FUNCTION_SET_CURRENT_VELOCITY_PERIOD = 19
  • BRICK_DC_FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BRICK_DC_FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BRICK_DC_FUNCTION_ENABLE_STATUS_LED = 238
  • BRICK_DC_FUNCTION_DISABLE_STATUS_LED = 239
  • BRICK_DC_FUNCTION_RESET = 243
procedure TBrickDC.SetResponseExpectedAll(const responseExpected: boolean)
Parameter:
  • responseExpected – Typ: boolean

Ändert das Response-Expected-Flag für alle Setter-Funktionen und Konfigurationsfunktionen für Callbacks diese Gerätes.

Konstanten

const BRICK_DC_DEVICE_IDENTIFIER

Diese Konstante wird verwendet um einen DC Brick zu identifizieren.

Die GetIdentity Funktion und der TIPConnection.OnEnumerate Callback der IP Connection haben ein deviceIdentifier Parameter um den Typ des Bricks oder Bricklets anzugeben.

const BRICK_DC_DEVICE_DISPLAY_NAME

Diese Konstante stellt den Anzeigenamen eines DC Brick dar.