openHAB - Silent Stepper Brick

Warning

The openHAB bindings are still in beta, but the development was stopped.

This is the description of the openHAB API bindings for the Silent Stepper Brick. General information and technical specifications for the Silent Stepper Brick are summarized in its hardware description.

An installation guide for the openHAB API bindings is part of their general description.

Thing

UID:
  • tinkerforge:bricksilentstepper:[UID]
Required firmware version:
  • 2.0.4
Firmware update supported:
  • no
Channels:
Actions:
Parameters:
  • All Data Update Interval – Type: integer, Default: 1000, Unit: ms, Min: 0, Max: 4294967295
  • Specifies the update interval for all data in milliseconds. A value of 0 disables automatic updates.

  • Minimum Voltage – Type: decimal, Default: 8, Unit: V, Min: 0, Max: 65.535
  • The minimum voltage in V, below which the Unter Voltage channel is triggered. The minimum possible value that works with the Silent Stepper Brick is 8V. You can use this function to detect the discharge of a battery that is used to drive the stepper motor. If you have a fixed power supply, you likely do not need this functionality. The default value is 8V.

  • Status LED Configuration – Type: boolean, Default: true
  • The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.

  • SPITFP Enable Dynamic Baudrate – Type: boolean, Default: true
  • The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred. The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received. This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed. In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance. The maximum value of the baudrate can be set per port. If the dynamic baudrate is disabled, the maximum baudrate will be used statically.

  • SPITFP Minimum Dynamic Baudrate – Type: integer, Default: 400000, Min: 400000, Max: 2000000
  • See SPITFP Enable Dynamic Baudrate

  • (Maximum) SPITFP Baudrate Port A – Type: integer, Default: 1400000, Min: 400000, Max: 2000000
  • The baudrate for Bricklet port A. If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference you can decrease the baudrate. If the dynamic baudrate feature is enabled, this is the maximum baudrate. Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.

  • (Maximum) SPITFP Baudrate Port B – Type: integer, Default: 1400000, Min: 400000, Max: 2000000
  • The baudrate for Bricklet port B. If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference you can decrease the baudrate. If the dynamic baudrate feature is enabled, this is the maximum baudrate. Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.

Channels

Velocity

The current velocity of the stepper motor in steps per second.

Type:
  • Number:Dimensionless
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperCurrentVelocity
Read only:
  • Yes
Position

The current position of the stepper motor in steps. On startup the position is 0.

Type:
  • Number:Dimensionless
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperCurrentPosition
Read only:
  • Yes
Remaining Steps

The remaining steps of the last call of the setSteps() action.

Type:
  • Number:Dimensionless
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperRemainingSteps
Read only:
  • Yes
Stack Voltage

The stack input voltage in V. The stack input voltage is the voltage that is supplied via the stack, i.e. it is given by a Step-Down or Step-Up Power Supply.

Type:
  • Number:ElectricPotential
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperStackVoltage
Read only:
  • Yes
Unit:
  • Volt
External Voltage

The external input voltage in mV. The external input voltage is given via the black power input connector on the Silent Stepper Brick.

If there is an external input voltage and a stack input voltage, the motor will be driven by the external input voltage. If there is only a stack voltage present, the motor will be driven by this voltage.

<b>Warning: This means, if you have a high stack voltage and a low external voltage, the motor will be driven with the low external voltage. If you then remove the external connection, it will immediately be driven by the high stack voltage</b>

Type:
  • Number:ElectricPotential
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperExternalVoltage
Read only:
  • Yes
Unit:
  • Volt
Current Consumption

The current consumption of the motor in A.

Type:
  • Number:ElectricCurrent
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperCurrentConsumption
Read only:
  • Yes
Unit:
  • Ampere
State

State of the brick:

  • Stop = 1
  • Acceleration = 2
  • Run = 3
  • Deacceleration = 4
  • Direction change to forward = 5
  • Direction change to backward = 6
Type:
  • Number:Dimensionless
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperState
Read only:
  • Yes
Previous State

State of the brick:

  • Stop = 1
  • Acceleration = 2
  • Run = 3
  • Deacceleration = 4
  • Direction change to forward = 5
  • Direction change to backward = 6
Type:
  • Number:Dimensionless
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperPreviousState
Read only:
  • Yes
Position Reached

This channel is triggered when a position set by the setSteps or setTargetPosition action is reached.

Note

Since we can't get any feedback from the stepper motor, this only works if the acceleration (see setSpeedRamping()) is set smaller or equal to the maximum acceleration of the motor. Otherwise the motor will lag behind the control value and the listener will be triggered too early.

Type:
  • Trigger (system.trigger)
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperPositionReached
Read only:
  • No
Unter Voltage

This channel is triggered when the input voltage drops below the configured minimum voltage.

Type:
  • Trigger (system.trigger)
UID:
  • tinkerforge:bricksilentstepper:[UID]:BrickSilentStepperUnterVoltage
Read only:
  • No

Actions

Actions can be used in rules by creating an action object. All actions return a Map<String, Object>. Returned values can be accessed by name, sometimes the type deduction needs some hints, as shown below:

val actions = getActions("tinkerforge", "tinkerforge:bricksilentstepper:[UID]")
val hwVersion = actions.brickSilentStepperGetIdentity().get("hardwareVersion") as short[]
logInfo("Example", "Hardware version: " + hwVersion.get(0) + "." + hwVersion.get(1) + "." + hwVersion.get(2))

Basic Actions

brickSilentStepperSetMaxVelocity(int velocity)
Parameters:
  • velocity – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1]

Sets the maximum velocity of the stepper motor. This function does not start the motor, it merely sets the maximum velocity the stepper motor is accelerated to. To get the motor running use either SetTargetPosition(), SetSteps(), DriveForward() or DriveBackward().

brickSilentStepperGetMaxVelocity()
Return Map:
  • velocity – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1]

Returns the velocity as set by SetMaxVelocity().

brickSilentStepperGetCurrentVelocity()
Return Map:
  • velocity – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1]

Returns the current velocity of the stepper motor.

brickSilentStepperSetSpeedRamping(int acceleration, int deacceleration)
Parameters:
  • acceleration – Type: int, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000
  • deacceleration – Type: int, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000

Sets the acceleration and deacceleration of the stepper motor. An acceleration of 1000 means, that every second the velocity is increased by 1000 steps/s.

For example: If the current velocity is 0 and you want to accelerate to a velocity of 8000 steps/s in 10 seconds, you should set an acceleration of 800 steps/s².

An acceleration/deacceleration of 0 means instantaneous acceleration/deacceleration (not recommended)

brickSilentStepperGetSpeedRamping()
Return Map:
  • acceleration – Type: int, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000
  • deacceleration – Type: int, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000

Returns the acceleration and deacceleration as set by SetSpeedRamping().

brickSilentStepperFullBrake()

Executes an active full brake.

Warning

This function is for emergency purposes, where an immediate brake is necessary. Depending on the current velocity and the strength of the motor, a full brake can be quite violent.

Call Stop() if you just want to stop the motor.

brickSilentStepperSetSteps(int steps)
Parameters:
  • steps – Type: int, Range: [-231 to 231 - 1]

Sets the number of steps the stepper motor should run. Positive values will drive the motor forward and negative values backward. The velocity, acceleration and deacceleration as set by SetMaxVelocity() and SetSpeedRamping() will be used.

brickSilentStepperGetSteps()
Return Map:
  • steps – Type: int, Range: [-231 to 231 - 1]

Returns the last steps as set by SetSteps().

brickSilentStepperGetRemainingSteps()
Return Map:
  • steps – Type: int, Range: [-231 to 231 - 1]

Returns the remaining steps of the last call of SetSteps(). For example, if SetSteps() is called with 2000 and GetRemainingSteps() is called after the motor has run for 500 steps, it will return 1500.

brickSilentStepperDriveForward()

Drives the stepper motor forward until DriveBackward() or Stop() is called. The velocity, acceleration and deacceleration as set by SetMaxVelocity() and SetSpeedRamping() will be used.

brickSilentStepperDriveBackward()

Drives the stepper motor backward until DriveForward() or Stop() is triggered. The velocity, acceleration and deacceleration as set by SetMaxVelocity() and SetSpeedRamping() will be used.

brickSilentStepperStop()

Stops the stepper motor with the deacceleration as set by SetSpeedRamping().

brickSilentStepperSetMotorCurrent(int current)
Parameters:
  • current – Type: int, Unit: 1 mA, Range: [360 to 1640], Default: 800

Sets the current with which the motor will be driven.

Warning

Do not set this value above the specifications of your stepper motor. Otherwise it may damage your motor.

brickSilentStepperGetMotorCurrent()
Return Map:
  • current – Type: int, Unit: 1 mA, Range: [360 to 1640], Default: 800

Returns the current as set by SetMotorCurrent().

brickSilentStepperEnable()

Enables the driver chip. The driver parameters can be configured (maximum velocity, acceleration, etc) before it is enabled.

brickSilentStepperDisable()

Disables the driver chip. The configurations are kept (maximum velocity, acceleration, etc) but the motor is not driven until it is enabled again.

Warning

Disabling the driver chip while the motor is still turning can damage the driver chip. The motor should be stopped calling Stop() function before disabling the motor power. The Stop() function will not wait until the motor is actually stopped. You have to explicitly wait for the appropriate time after calling the Stop() function before calling the Disable() function.

brickSilentStepperIsEnabled()
Return Map:
  • enabled – Type: boolean, Default: false

Returns true if the driver chip is enabled, false otherwise.

brickSilentStepperSetBasicConfiguration(int standstillCurrent, int motorRunCurrent, int standstillDelayTime, int powerDownTime, int stealthThreshold, int coolstepThreshold, int classicThreshold, boolean highVelocityChopperMode)
Parameters:
  • standstillCurrent – Type: int, Unit: 1 mA, Range: [0 to 216 - 1], Default: 200
  • motorRunCurrent – Type: int, Unit: 1 mA, Range: [0 to 216 - 1], Default: 800
  • standstillDelayTime – Type: int, Unit: 1 ms, Range: [0 to 307], Default: 0
  • powerDownTime – Type: int, Unit: 1 ms, Range: [0 to 5222], Default: 1000
  • stealthThreshold – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • coolstepThreshold – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • classicThreshold – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 1000
  • highVelocityChopperMode – Type: boolean, Default: false

Sets the basic configuration parameters for the different modes (Stealth, Coolstep, Classic).

  • Standstill Current: This value can be used to lower the current during stand still. This might be reasonable to reduce the heating of the motor and the Brick. When the motor is in standstill the configured motor phase current will be driven until the configured Power Down Time is elapsed. After that the phase current will be reduced to the standstill current. The elapsed time for this reduction can be configured with the Standstill Delay Time. The maximum allowed value is the configured maximum motor current (see SetMotorCurrent()).
  • Motor Run Current: The value sets the motor current when the motor is running. Use a value of at least one half of the global maximum motor current for a good microstep performance. The maximum allowed value is the current motor current. The API maps the entered value to 1/32 ... 32/32 of the maximum motor current. This value should be used to change the motor current during motor movement, whereas the global maximum motor current should not be changed while the motor is moving (see SetMotorCurrent()).
  • Standstill Delay Time: Controls the duration for motor power down after a motion as soon as standstill is detected and the Power Down Time is expired. A high Standstill Delay Time results in a smooth transition that avoids motor jerk during power down.
  • Power Down Time: Sets the delay time after a stand still.
  • Stealth Threshold: Sets the upper threshold for Stealth mode. If the velocity of the motor goes above this value, Stealth mode is turned off. Otherwise it is turned on. In Stealth mode the torque declines with high speed.
  • Coolstep Threshold: Sets the lower threshold for Coolstep mode. The Coolstep Threshold needs to be above the Stealth Threshold.
  • Classic Threshold: Sets the lower threshold for classic mode. In classic mode the stepper becomes more noisy, but the torque is maximized.
  • High Velocity Chopper Mode: If High Velocity Chopper Mode is enabled, the stepper control is optimized to run the stepper motors at high velocities.

If you want to use all three thresholds make sure that Stealth Threshold < Coolstep Threshold < Classic Threshold.

brickSilentStepperGetBasicConfiguration()
Return Map:
  • standstillCurrent – Type: int, Unit: 1 mA, Range: [0 to 216 - 1], Default: 200
  • motorRunCurrent – Type: int, Unit: 1 mA, Range: [0 to 216 - 1], Default: 800
  • standstillDelayTime – Type: int, Unit: 1 ms, Range: [0 to 307], Default: 0
  • powerDownTime – Type: int, Unit: 1 ms, Range: [0 to 5222], Default: 1000
  • stealthThreshold – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • coolstepThreshold – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • classicThreshold – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 1000
  • highVelocityChopperMode – Type: boolean, Default: false

Returns the configuration as set by SetBasicConfiguration().

Advanced Actions

brickSilentStepperSetCurrentPosition(int position)
Parameters:
  • position – Type: int, Range: [-231 to 231 - 1]

Sets the current steps of the internal step counter. This can be used to set the current position to 0 when some kind of starting position is reached (e.g. when a CNC machine reaches a corner).

brickSilentStepperGetCurrentPosition()
Return Map:
  • position – Type: int, Range: [-231 to 231 - 1]

Returns the current position of the stepper motor in steps. On startup the position is 0. The steps are counted with all possible driving functions (SetTargetPosition(), SetSteps(), DriveForward() or DriveBackward()). It also is possible to reset the steps to 0 or set them to any other desired value with SetCurrentPosition().

brickSilentStepperSetTargetPosition(int position)
Parameters:
  • position – Type: int, Range: [-231 to 231 - 1]

Sets the target position of the stepper motor in steps. For example, if the current position of the motor is 500 and SetTargetPosition() is called with 1000, the stepper motor will drive 500 steps forward. It will use the velocity, acceleration and deacceleration as set by SetMaxVelocity() and SetSpeedRamping().

A call of SetTargetPosition() with the parameter x is equivalent to a call of SetSteps() with the parameter (x - GetCurrentPosition()).

brickSilentStepperGetTargetPosition()
Return Map:
  • position – Type: int, Range: [-231 to 231 - 1]

Returns the last target position as set by SetTargetPosition().

brickSilentStepperSetStepConfiguration(short stepResolution, boolean interpolation)
Parameters:
  • stepResolution – Type: short, Range: See constants, Default: 0
  • interpolation – Type: boolean, Default: true

Sets the step resolution from full-step up to 1/256-step.

If interpolation is turned on, the Silent Stepper Brick will always interpolate your step inputs as 1/256-step. If you use full-step mode with interpolation, each step will generate 256 1/256 steps.

For maximum torque use full-step without interpolation. For maximum resolution use 1/256-step. Turn interpolation on to make the Stepper driving less noisy.

If you often change the speed with high acceleration you should turn the interpolation off.

The following constants are available for this function:

For stepResolution:

  • val STEP_RESOLUTION_1 = 8
  • val STEP_RESOLUTION_2 = 7
  • val STEP_RESOLUTION_4 = 6
  • val STEP_RESOLUTION_8 = 5
  • val STEP_RESOLUTION_16 = 4
  • val STEP_RESOLUTION_32 = 3
  • val STEP_RESOLUTION_64 = 2
  • val STEP_RESOLUTION_128 = 1
  • val STEP_RESOLUTION_256 = 0
brickSilentStepperGetStepConfiguration()
Return Map:
  • stepResolution – Type: short, Range: See constants
  • interpolation – Type: boolean, Default: true

Returns the step mode as set by SetStepConfiguration().

The following constants are available for this function:

For stepResolution:

  • val STEP_RESOLUTION_1 = 8
  • val STEP_RESOLUTION_2 = 7
  • val STEP_RESOLUTION_4 = 6
  • val STEP_RESOLUTION_8 = 5
  • val STEP_RESOLUTION_16 = 4
  • val STEP_RESOLUTION_32 = 3
  • val STEP_RESOLUTION_64 = 2
  • val STEP_RESOLUTION_128 = 1
  • val STEP_RESOLUTION_256 = 0
brickSilentStepperGetStackInputVoltage()
Return Map:
  • voltage – Type: int, Unit: 1 mV, Range: [0 to 216 - 1]

Returns the stack input voltage. The stack input voltage is the voltage that is supplied via the stack, i.e. it is given by a Step-Down or Step-Up Power Supply.

brickSilentStepperGetExternalInputVoltage()
Return Map:
  • voltage – Type: int, Unit: 1 mV, Range: [0 to 216 - 1]

Returns the external input voltage. The external input voltage is given via the black power input connector on the Silent Stepper Brick.

If there is an external input voltage and a stack input voltage, the motor will be driven by the external input voltage. If there is only a stack voltage present, the motor will be driven by this voltage.

Warning

This means, if you have a high stack voltage and a low external voltage, the motor will be driven with the low external voltage. If you then remove the external connection, it will immediately be driven by the high stack voltage

brickSilentStepperSetSpreadcycleConfiguration(short slowDecayDuration, boolean enableRandomSlowDecay, short fastDecayDuration, short hysteresisStartValue, byte hysteresisEndValue, byte sineWaveOffset, short chopperMode, short comparatorBlankTime, boolean fastDecayWithoutComparator)
Parameters:
  • slowDecayDuration – Type: short, Range: [0 to 15], Default: 4
  • enableRandomSlowDecay – Type: boolean, Default: false
  • fastDecayDuration – Type: short, Range: [0 to 15], Default: 0
  • hysteresisStartValue – Type: short, Range: [0 to 7], Default: 0
  • hysteresisEndValue – Type: byte, Range: [-3 to 12], Default: 0
  • sineWaveOffset – Type: byte, Range: [-3 to 12], Default: 0
  • chopperMode – Type: short, Range: See constants, Default: 0
  • comparatorBlankTime – Type: short, Range: [0 to 3], Default: 1
  • fastDecayWithoutComparator – Type: boolean, Default: false

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets the Spreadcycle configuration parameters. Spreadcycle is a chopper algorithm which actively controls the motor current flow. More information can be found in the TMC2130 datasheet on page 47 (7 spreadCycle and Classic Chopper).

  • Slow Decay Duration: Controls duration of off time setting of slow decay phase. 0 = driver disabled, all bridges off. Use 1 only with Comparator Blank time >= 2.

  • Enable Random Slow Decay: Set to false to fix chopper off time as set by Slow Decay Duration. If you set it to true, Decay Duration is randomly modulated.

  • Fast Decay Duration: Sets the fast decay duration. This parameters is only used if the Chopper Mode is set to Fast Decay.

  • Hysteresis Start Value: Sets the hysteresis start value. This parameter is only used if the Chopper Mode is set to Spread Cycle.

  • Hysteresis End Value: Sets the hysteresis end value. This parameter is only used if the Chopper Mode is set to Spread Cycle.

  • Sine Wave Offset: Sets the sine wave offset. This parameters is only used if the Chopper Mode is set to Fast Decay. 1/512 of the value becomes added to the absolute value of the sine wave.

  • Chopper Mode: 0 = Spread Cycle, 1 = Fast Decay.

  • Comparator Blank Time: Sets the blank time of the comparator. Available values are

    • 0 = 16 clocks,
    • 1 = 24 clocks,
    • 2 = 36 clocks and
    • 3 = 54 clocks.

    A value of 1 or 2 is recommended for most applications.

  • Fast Decay Without Comparator: If set to true the current comparator usage for termination of the fast decay cycle is disabled.

The following constants are available for this function:

For chopperMode:

  • val CHOPPER_MODE_SPREAD_CYCLE = 0
  • val CHOPPER_MODE_FAST_DECAY = 1
brickSilentStepperGetSpreadcycleConfiguration()
Return Map:
  • slowDecayDuration – Type: short, Range: [0 to 15], Default: 4
  • enableRandomSlowDecay – Type: boolean, Default: false
  • fastDecayDuration – Type: short, Range: [0 to 15], Default: 0
  • hysteresisStartValue – Type: short, Range: [0 to 7], Default: 0
  • hysteresisEndValue – Type: byte, Range: [-3 to 12], Default: 0
  • sineWaveOffset – Type: byte, Range: [-3 to 12], Default: 0
  • chopperMode – Type: short, Range: See constants, Default: 0
  • comparatorBlankTime – Type: short, Range: [0 to 3], Default: 1
  • fastDecayWithoutComparator – Type: boolean, Default: false

Returns the configuration as set by SetBasicConfiguration().

The following constants are available for this function:

For chopperMode:

  • val CHOPPER_MODE_SPREAD_CYCLE = 0
  • val CHOPPER_MODE_FAST_DECAY = 1
brickSilentStepperSetStealthConfiguration(boolean enableStealth, short amplitude, short gradient, boolean enableAutoscale, boolean forceSymmetric, short freewheelMode)
Parameters:
  • enableStealth – Type: boolean, Default: true
  • amplitude – Type: short, Range: [0 to 255], Default: 128
  • gradient – Type: short, Range: [0 to 255], Default: 4
  • enableAutoscale – Type: boolean, Default: true
  • forceSymmetric – Type: boolean, Default: false
  • freewheelMode – Type: short, Range: See constants, Default: 0

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets the configuration relevant for Stealth mode.

  • Enable Stealth: If set to true the stealth mode is enabled, if set to false the stealth mode is disabled, even if the speed is below the threshold set in SetBasicConfiguration().
  • Amplitude: If autoscale is disabled, the PWM amplitude is scaled by this value. If autoscale is enabled, this value defines the maximum PWM amplitude change per half wave.
  • Gradient: If autoscale is disabled, the PWM gradient is scaled by this value. If autoscale is enabled, this value defines the maximum PWM gradient. With autoscale a value above 64 is recommended, otherwise the regulation might not be able to measure the current.
  • Enable Autoscale: If set to true, automatic current control is used. Otherwise the user defined amplitude and gradient are used.
  • Force Symmetric: If true, A symmetric PWM cycle is enforced. Otherwise the PWM value may change within each PWM cycle.
  • Freewheel Mode: The freewheel mode defines the behavior in stand still if the Standstill Current (see SetBasicConfiguration()) is set to 0.

The following constants are available for this function:

For freewheelMode:

  • val FREEWHEEL_MODE_NORMAL = 0
  • val FREEWHEEL_MODE_FREEWHEELING = 1
  • val FREEWHEEL_MODE_COIL_SHORT_LS = 2
  • val FREEWHEEL_MODE_COIL_SHORT_HS = 3
brickSilentStepperGetStealthConfiguration()
Return Map:
  • enableStealth – Type: boolean, Default: true
  • amplitude – Type: short, Range: [0 to 255], Default: 128
  • gradient – Type: short, Range: [0 to 255], Default: 4
  • enableAutoscale – Type: boolean, Default: true
  • forceSymmetric – Type: boolean, Default: false
  • freewheelMode – Type: short, Range: See constants, Default: 0

Returns the configuration as set by SetStealthConfiguration().

The following constants are available for this function:

For freewheelMode:

  • val FREEWHEEL_MODE_NORMAL = 0
  • val FREEWHEEL_MODE_FREEWHEELING = 1
  • val FREEWHEEL_MODE_COIL_SHORT_LS = 2
  • val FREEWHEEL_MODE_COIL_SHORT_HS = 3
brickSilentStepperSetCoolstepConfiguration(short minimumStallguardValue, short maximumStallguardValue, short currentUpStepWidth, short currentDownStepWidth, short minimumCurrent, byte stallguardThresholdValue, short stallguardMode)
Parameters:
  • minimumStallguardValue – Type: short, Range: [0 to 15], Default: 2
  • maximumStallguardValue – Type: short, Range: [0 to 15], Default: 10
  • currentUpStepWidth – Type: short, Range: See constants, Default: 0
  • currentDownStepWidth – Type: short, Range: See constants, Default: 0
  • minimumCurrent – Type: short, Range: See constants, Default: 0
  • stallguardThresholdValue – Type: byte, Range: [-64 to 63], Default: 0
  • stallguardMode – Type: short, Range: See constants, Default: 0

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets the configuration relevant for Coolstep.

  • Minimum Stallguard Value: If the Stallguard result falls below this value*32, the motor current is increased to reduce motor load angle. A value of 0 turns Coolstep off.
  • Maximum Stallguard Value: If the Stallguard result goes above (Min Stallguard Value + Max Stallguard Value + 1) * 32, the motor current is decreased to save energy.
  • Current Up Step Width: Sets the up step increment per Stallguard value. The value range is 0-3, corresponding to the increments 1, 2, 4 and 8.
  • Current Down Step Width: Sets the down step decrement per Stallguard value. The value range is 0-3, corresponding to the decrements 1, 2, 8 and 16.
  • Minimum Current: Sets the minimum current for Coolstep current control. You can choose between half and quarter of the run current.
  • Stallguard Threshold Value: Sets the level for stall output (see GetDriverStatus()). A lower value gives a higher sensitivity. You have to find a suitable value for your motor by trial and error, 0 works for most motors.
  • Stallguard Mode: Set to 0 for standard resolution or 1 for filtered mode. In filtered mode the Stallguard signal will be updated every four full-steps.

The following constants are available for this function:

For currentUpStepWidth:

  • val CURRENT_UP_STEP_INCREMENT_1 = 0
  • val CURRENT_UP_STEP_INCREMENT_2 = 1
  • val CURRENT_UP_STEP_INCREMENT_4 = 2
  • val CURRENT_UP_STEP_INCREMENT_8 = 3

For currentDownStepWidth:

  • val CURRENT_DOWN_STEP_DECREMENT_1 = 0
  • val CURRENT_DOWN_STEP_DECREMENT_2 = 1
  • val CURRENT_DOWN_STEP_DECREMENT_8 = 2
  • val CURRENT_DOWN_STEP_DECREMENT_32 = 3

For minimumCurrent:

  • val MINIMUM_CURRENT_HALF = 0
  • val MINIMUM_CURRENT_QUARTER = 1

For stallguardMode:

  • val STALLGUARD_MODE_STANDARD = 0
  • val STALLGUARD_MODE_FILTERED = 1
brickSilentStepperGetCoolstepConfiguration()
Return Map:
  • minimumStallguardValue – Type: short, Range: [0 to 15], Default: 2
  • maximumStallguardValue – Type: short, Range: [0 to 15], Default: 10
  • currentUpStepWidth – Type: short, Range: See constants, Default: 0
  • currentDownStepWidth – Type: short, Range: See constants, Default: 0
  • minimumCurrent – Type: short, Range: See constants, Default: 0
  • stallguardThresholdValue – Type: byte, Range: [-64 to 63], Default: 0
  • stallguardMode – Type: short, Range: See constants, Default: 0

Returns the configuration as set by SetCoolstepConfiguration().

The following constants are available for this function:

For currentUpStepWidth:

  • val CURRENT_UP_STEP_INCREMENT_1 = 0
  • val CURRENT_UP_STEP_INCREMENT_2 = 1
  • val CURRENT_UP_STEP_INCREMENT_4 = 2
  • val CURRENT_UP_STEP_INCREMENT_8 = 3

For currentDownStepWidth:

  • val CURRENT_DOWN_STEP_DECREMENT_1 = 0
  • val CURRENT_DOWN_STEP_DECREMENT_2 = 1
  • val CURRENT_DOWN_STEP_DECREMENT_8 = 2
  • val CURRENT_DOWN_STEP_DECREMENT_32 = 3

For minimumCurrent:

  • val MINIMUM_CURRENT_HALF = 0
  • val MINIMUM_CURRENT_QUARTER = 1

For stallguardMode:

  • val STALLGUARD_MODE_STANDARD = 0
  • val STALLGUARD_MODE_FILTERED = 1
brickSilentStepperSetMiscConfiguration(boolean disableShortToGroundProtection, short synchronizePhaseFrequency)
Parameters:
  • disableShortToGroundProtection – Type: boolean, Default: false
  • synchronizePhaseFrequency – Type: short, Range: [0 to 15], Default: 0

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets miscellaneous configuration parameters.

  • Disable Short To Ground Protection: Set to false to enable short to ground protection, otherwise it is disabled.
  • Synchronize Phase Frequency: With this parameter you can synchronize the chopper for both phases of a two phase motor to avoid the occurrence of a beat. The value range is 0-15. If set to 0, the synchronization is turned off. Otherwise the synchronization is done through the formula f_sync = f_clk/(value*64). In Classic Mode the synchronization is automatically switched off. f_clk is 12.8MHz.
brickSilentStepperGetMiscConfiguration()
Return Map:
  • disableShortToGroundProtection – Type: boolean, Default: false
  • synchronizePhaseFrequency – Type: short, Range: [0 to 15], Default: 0

Returns the configuration as set by SetMiscConfiguration().

brickSilentStepperGetDriverStatus()
Return Map:
  • openLoad – Type: short, Range: See constants
  • shortToGround – Type: short, Range: See constants
  • overTemperature – Type: short, Range: See constants
  • motorStalled – Type: boolean
  • actualMotorCurrent – Type: short, Range: [0 to 31]
  • fullStepActive – Type: boolean
  • stallguardResult – Type: short, Range: [0 to 255]
  • stealthVoltageAmplitude – Type: short, Range: [0 to 255]

Returns the current driver status.

  • Open Load: Indicates if an open load is present on phase A, B or both. This could mean that there is a problem with the wiring of the motor. False detection can occur in fast motion as well as during stand still.
  • Short To Ground: Indicates if a short to ground is present on phase A, B or both. If this is detected the driver automatically becomes disabled and stays disabled until it is enabled again manually.
  • Over Temperature: The over temperature indicator switches to "Warning" if the driver IC warms up. The warning flag is expected during long duration stepper uses. If the temperature limit is reached the indicator switches to "Limit". In this case the driver becomes disabled until it cools down again.
  • Motor Stalled: Is true if a motor stall was detected.
  • Actual Motor Current: Indicates the actual current control scaling as used in Coolstep mode. It represents a multiplier of 1/32 to 32/32 of the Motor Run Current as set by SetBasicConfiguration(). Example: If a Motor Run Current of 1000mA was set and the returned value is 15, the Actual Motor Current is 16/32*1000mA = 500mA.
  • Stallguard Result: Indicates the load of the motor. A lower value signals a higher load. Per trial and error you can find out which value corresponds to a suitable torque for the velocity used in your application. After that you can use this threshold value to find out if a motor stall becomes probable and react on it (e.g. decrease velocity). During stand still this value can not be used for stall detection, it shows the chopper on-time for motor coil A.
  • Stealth Voltage Amplitude: Shows the actual PWM scaling. In Stealth mode it can be used to detect motor load and stall if autoscale is enabled (see SetStealthConfiguration()).

The following constants are available for this function:

For openLoad:

  • val OPEN_LOAD_NONE = 0
  • val OPEN_LOAD_PHASE_A = 1
  • val OPEN_LOAD_PHASE_B = 2
  • val OPEN_LOAD_PHASE_AB = 3

For shortToGround:

  • val SHORT_TO_GROUND_NONE = 0
  • val SHORT_TO_GROUND_PHASE_A = 1
  • val SHORT_TO_GROUND_PHASE_B = 2
  • val SHORT_TO_GROUND_PHASE_AB = 3

For overTemperature:

  • val OVER_TEMPERATURE_NONE = 0
  • val OVER_TEMPERATURE_WARNING = 1
  • val OVER_TEMPERATURE_LIMIT = 2
brickSilentStepperSetTimeBase(long timeBase)
Parameters:
  • timeBase – Type: long, Unit: 1 s, Range: [0 to 232 - 1], Default: 1

Sets the time base of the velocity and the acceleration of the Silent Stepper Brick.

For example, if you want to make one step every 1.5 seconds, you can set the time base to 15 and the velocity to 10. Now the velocity is 10steps/15s = 1steps/1.5s.

brickSilentStepperGetTimeBase()
Return Map:
  • timeBase – Type: long, Unit: 1 s, Range: [0 to 232 - 1], Default: 1

Returns the time base as set by SetTimeBase().

brickSilentStepperGetAllData()
Return Map:
  • currentVelocity – Type: int, Unit: 1 1/s, Range: [0 to 216 - 1]
  • currentPosition – Type: int, Range: [-231 to 231 - 1]
  • remainingSteps – Type: int, Range: [-231 to 231 - 1]
  • stackVoltage – Type: int, Unit: 1 mV, Range: [0 to 216 - 1]
  • externalVoltage – Type: int, Unit: 1 mV, Range: [0 to 216 - 1]
  • currentConsumption – Type: int, Unit: 1 mA, Range: [0 to 216 - 1]

Returns the following parameters: The current velocity, the current position, the remaining steps, the stack voltage, the external voltage and the current consumption of the stepper motor.

The current consumption is calculated by multiplying the Actual Motor Current value (see SetBasicConfiguration()) with the Motor Run Current (see GetDriverStatus()). This is an internal calculation of the driver, not an independent external measurement.

The current consumption calculation was broken up to firmware 2.0.1, it is fixed since firmware 2.0.2.

brickSilentStepperGetIdentity()
Return Map:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['0' to '8']
  • hardwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier.

The position is the position in the stack from '0' (bottom) to '8' (top).

The device identifier numbers can be found here

brickSilentStepperIsStatusLEDEnabled()
Return Map:
  • enabled – Type: boolean, Default: true

Returns true if the status LED is enabled, false otherwise.

brickSilentStepperGetChipTemperature()
Return Map:
  • temperature – Type: short, Unit: 1/10 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has an accuracy of ±15%. Practically it is only useful as an indicator for temperature changes.

brickSilentStepperGetSendTimeoutCount(short communicationMethod)
Parameters:
  • communicationMethod – Type: short, Range: See constants
Return Map:
  • timeoutCount – Type: long, Range: [0 to 232 - 1]

Returns the timeout count for the different communication methods.

The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.

This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0.

The following constants are available for this function:

For communicationMethod:

  • val COMMUNICATION_METHOD_NONE = 0
  • val COMMUNICATION_METHOD_USB = 1
  • val COMMUNICATION_METHOD_SPI_STACK = 2
  • val COMMUNICATION_METHOD_CHIBI = 3
  • val COMMUNICATION_METHOD_RS485 = 4
  • val COMMUNICATION_METHOD_WIFI = 5
  • val COMMUNICATION_METHOD_ETHERNET = 6
  • val COMMUNICATION_METHOD_WIFI_V2 = 7
brickSilentStepperGetSPITFPBaudrateConfig()
Return Map:
  • enableDynamicBaudrate – Type: boolean, Default: true
  • minimumDynamicBaudrate – Type: long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 400000

Returns the baudrate config, see the thing configuration.

New in version 2.0.4 (Firmware).

brickSilentStepperGetSPITFPErrorCount(char brickletPort)
Parameters:
  • brickletPort – Type: char, Range: ['a' to 'b']
Return Map:
  • errorCountACKChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side.

brickSilentStepperGetSPITFPBaudrate(char brickletPort)
Parameters:
  • brickletPort – Type: char, Range: ['a' to 'b']
Return Map:
  • baudrate – Type: long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 1400000

Returns the baudrate for a given Bricklet port, see the thing configuration.

Trigger Channel Configuration Actions

brickSilentStepperGetAllDataPeriod()
Return Map:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by the thing configuration.