C/C++ - Performance DC Bricklet

This is the description of the C/C++ API bindings for the Performance DC Bricklet. General information and technical specifications for the Performance DC Bricklet are summarized in its hardware description.

An installation guide for the C/C++ API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Configuration

Download (example_configuration.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#define IPCON_EXPOSE_MILLISLEEP

#include <stdio.h>

#include "ip_connection.h"
#include "bricklet_performance_dc.h"

#define HOST "localhost"
#define PORT 4223
#define UID "XYZ" // Change XYZ to the UID of your Performance DC Bricklet

int main(void) {
    // Create IP connection
    IPConnection ipcon;
    ipcon_create(&ipcon);

    // Create device object
    PerformanceDC pdc;
    performance_dc_create(&pdc, UID, &ipcon);

    // Connect to brickd
    if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
        fprintf(stderr, "Could not connect\n");
        return 1;
    }
    // Don't use device before ipcon is connected

    performance_dc_set_drive_mode(&pdc, PERFORMANCE_DC_DRIVE_MODE_DRIVE_COAST);
    performance_dc_set_pwm_frequency(&pdc, 10000); // Use PWM frequency of 10 kHz
    performance_dc_set_motion(&pdc, 4096, 4096); // Slow ac-/deceleration (12.5 %/s)
    performance_dc_set_velocity(&pdc, 32767); // Full speed forward (100 %)
    performance_dc_set_enabled(&pdc, true); // Enable motor power

    printf("Press key to exit\n");
    getchar();

    // Stop motor before disabling motor power
    performance_dc_set_motion(&pdc, 4096,
                              16384); // Fast decceleration (50 %/s) for stopping
    performance_dc_set_velocity(&pdc, 0); // Request motor stop
    millisleep(2000); // Wait for motor to actually stop: velocity (100 %) / decceleration (50 %/s) = 2 s
    performance_dc_set_enabled(&pdc, false); // Disable motor power

    performance_dc_destroy(&pdc);
    ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
    return 0;
}

Callback

Download (example_callback.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#define IPCON_EXPOSE_MILLISLEEP

#include <stdio.h>

#include "ip_connection.h"
#include "bricklet_performance_dc.h"

#define HOST "localhost"
#define PORT 4223
#define UID "XYZ" // Change XYZ to the UID of your Performance DC Bricklet

// Use velocity reached callback to swing back and forth
// between full speed forward and full speed backward
void cb_velocity_reached(int16_t velocity, void *user_data) {
    PerformanceDC *pdc = (PerformanceDC *)user_data;

    if(velocity == 32767) {
        printf("Velocity: Full speed forward, now turning backward\n");
        performance_dc_set_velocity(pdc, -32767);
    } else if(velocity == -32767) {
        printf("Velocity: Full speed backward, now turning forward\n");
        performance_dc_set_velocity(pdc, 32767);
    } else {
        printf("Error\n"); // Can only happen if another program sets velocity
    }
}

int main(void) {
    // Create IP connection
    IPConnection ipcon;
    ipcon_create(&ipcon);

    // Create device object
    PerformanceDC pdc;
    performance_dc_create(&pdc, UID, &ipcon);

    // Connect to brickd
    if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
        fprintf(stderr, "Could not connect\n");
        return 1;
    }
    // Don't use device before ipcon is connected

    // Register velocity reached callback to function cb_velocity_reached
    performance_dc_register_callback(&pdc,
                                     PERFORMANCE_DC_CALLBACK_VELOCITY_REACHED,
                                     (void (*)(void))cb_velocity_reached,
                                     &pdc);

    // Enable velocity reached callback
    performance_dc_set_velocity_reached_callback_configuration(&pdc, true);

    // The acceleration has to be smaller or equal to the maximum
    // acceleration of the DC motor, otherwise the velocity reached
    // callback will be called too early
    performance_dc_set_motion(&pdc, 4096, 4096); // Slow acceleration (12.5 %/s)
    performance_dc_set_velocity(&pdc, 32767); // Full speed forward (100 %)

    // Enable motor power
    performance_dc_set_enabled(&pdc, true);

    printf("Press key to exit\n");
    getchar();

    // Stop motor before disabling motor power
    performance_dc_set_motion(&pdc, 4096,
                              16384); // Fast decceleration (50 %/s) for stopping
    performance_dc_set_velocity(&pdc, 0); // Request motor stop
    millisleep(2000); // Wait for motor to actually stop: velocity (100 %) / decceleration (50 %/s) = 2 s
    performance_dc_set_enabled(&pdc, false); // Disable motor power

    performance_dc_destroy(&pdc);
    ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
    return 0;
}

API

Most functions of the C/C++ bindings return an error code (e_code). Data returned from the device, when a getter is called, is handled via output parameters. These parameters are labeled with the ret_ prefix.

Possible error codes are:

  • E_OK = 0
  • E_TIMEOUT = -1
  • E_NO_STREAM_SOCKET = -2
  • E_HOSTNAME_INVALID = -3
  • E_NO_CONNECT = -4
  • E_NO_THREAD = -5
  • E_NOT_ADDED = -6 (unused since C/C++ bindings version 2.0.0)
  • E_ALREADY_CONNECTED = -7
  • E_NOT_CONNECTED = -8
  • E_INVALID_PARAMETER = -9
  • E_NOT_SUPPORTED = -10
  • E_UNKNOWN_ERROR_CODE = -11
  • E_STREAM_OUT_OF_SYNC = -12
  • E_INVALID_UID = -13
  • E_NON_ASCII_CHAR_IN_SECRET = -14
  • E_WRONG_DEVICE_TYPE = -15
  • E_DEVICE_REPLACED = -16
  • E_WRONG_RESPONSE_LENGTH = -17

as defined in ip_connection.h.

All functions listed below are thread-safe.

Basic Functions

void performance_dc_create(PerformanceDC *performance_dc, const char *uid, IPConnection *ipcon)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • uid – Type: const char *
  • ipcon – Type: IPConnection *

Creates the device object performance_dc with the unique device ID uid and adds it to the IPConnection ipcon:

PerformanceDC performance_dc;
performance_dc_create(&performance_dc, "YOUR_DEVICE_UID", &ipcon);

This device object can be used after the IP connection has been connected.

void performance_dc_destroy(PerformanceDC *performance_dc)
Parameters:
  • performance_dc – Type: PerformanceDC *

Removes the device object performance_dc from its IPConnection and destroys it. The device object cannot be used anymore afterwards.

int performance_dc_set_enabled(PerformanceDC *performance_dc, bool enabled)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • enabled – Type: bool
Returns:
  • e_code – Type: int

Enables/Disables the driver chip. The driver parameters can be configured (velocity, acceleration, etc) before it is enabled.

int performance_dc_get_enabled(PerformanceDC *performance_dc, bool *ret_enabled)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns true if the driver chip is enabled, false otherwise.

int performance_dc_set_velocity(PerformanceDC *performance_dc, int16_t velocity)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0
Returns:
  • e_code – Type: int

Sets the velocity of the motor. Whereas -32767 is full speed backward, 0 is stop and 32767 is full speed forward. Depending on the acceleration (see performance_dc_set_motion()), the motor is not immediately brought to the velocity but smoothly accelerated.

The velocity describes the duty cycle of the PWM with which the motor is controlled, e.g. a velocity of 3277 sets a PWM with a 10% duty cycle. You can not only control the duty cycle of the PWM but also the frequency, see performance_dc_set_pwm_frequency().

int performance_dc_get_velocity(PerformanceDC *performance_dc, int16_t *ret_velocity)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0
Returns:
  • e_code – Type: int

Returns the velocity as set by performance_dc_set_velocity().

int performance_dc_get_current_velocity(PerformanceDC *performance_dc, int16_t *ret_velocity)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0
Returns:
  • e_code – Type: int

Returns the current velocity of the motor. This value is different from performance_dc_get_velocity() whenever the motor is currently accelerating to a goal set by performance_dc_set_velocity().

int performance_dc_set_motion(PerformanceDC *performance_dc, uint16_t acceleration, uint16_t deceleration)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • acceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
  • deceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
Returns:
  • e_code – Type: int

Sets the acceleration and deceleration of the motor. It is given in velocity/s. An acceleration of 10000 means, that every second the velocity is increased by 10000 (or about 30% duty cycle).

For example: If the current velocity is 0 and you want to accelerate to a velocity of 16000 (about 50% duty cycle) in 10 seconds, you should set an acceleration of 1600.

If acceleration and deceleration is set to 0, there is no speed ramping, i.e. a new velocity is immediately given to the motor.

int performance_dc_get_motion(PerformanceDC *performance_dc, uint16_t *ret_acceleration, uint16_t *ret_deceleration)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_acceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
  • ret_deceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
Returns:
  • e_code – Type: int

Returns the acceleration/deceleration as set by performance_dc_set_motion().

int performance_dc_full_brake(PerformanceDC *performance_dc)
Parameters:
  • performance_dc – Type: PerformanceDC *
Returns:
  • e_code – Type: int

Executes an active full brake.

Warning

This function is for emergency purposes, where an immediate brake is necessary. Depending on the current velocity and the strength of the motor, a full brake can be quite violent.

Call performance_dc_set_velocity() with 0 if you just want to stop the motor.

int performance_dc_get_pwm_frequency(PerformanceDC *performance_dc, uint16_t *ret_frequency)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_frequency – Type: uint16_t, Unit: 1 Hz, Range: [1 to 20000], Default: 15000
Returns:
  • e_code – Type: int

Returns the PWM frequency as set by performance_dc_set_pwm_frequency().

int performance_dc_get_power_statistics(PerformanceDC *performance_dc, uint16_t *ret_voltage, uint16_t *ret_current, int16_t *ret_temperature)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
  • ret_current – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1]
  • ret_temperature – Type: int16_t, Unit: 1/10 °, Range: [-215 to 215 - 1]
Returns:
  • e_code – Type: int

Returns input voltage, current usage and temperature of the driver.

int performance_dc_set_thermal_shutdown(PerformanceDC *performance_dc, uint8_t temperature)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • temperature – Type: uint8_t, Unit: 1 °, Range: [0 to 255], Default: 125
Returns:
  • e_code – Type: int

Sets a temperature threshold that is used for thermal shutdown.

Additionally to this user defined threshold the driver chip will shut down at a temperature of 150°C.

If a thermal shutdown is triggered the driver is disabled and has to be explicitly re-enabled with performance_dc_set_enabled().

int performance_dc_get_thermal_shutdown(PerformanceDC *performance_dc, uint8_t *ret_temperature)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_temperature – Type: uint8_t, Unit: 1 °, Range: [0 to 255]
Returns:
  • e_code – Type: int

Returns the thermal shutdown temperature as set by performance_dc_set_thermal_shutdown().

int performance_dc_set_gpio_configuration(PerformanceDC *performance_dc, uint8_t channel, uint16_t debounce, uint16_t stop_deceleration)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • channel – Type: uint8_t, Range: [0 to 1]
  • debounce – Type: uint16_t, Unit: 1 ms, Range: [0 to 216 - 1], Default: 200
  • stop_deceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 216 - 1
Returns:
  • e_code – Type: int

Sets the GPIO configuration for the given channel. You can configure a debounce and the deceleration that is used if the action is configured as normal stop. See performance_dc_set_gpio_action().

int performance_dc_get_gpio_configuration(PerformanceDC *performance_dc, uint8_t channel, uint16_t *ret_debounce, uint16_t *ret_stop_deceleration)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • channel – Type: uint8_t, Range: [0 to 1]
Output Parameters:
  • ret_debounce – Type: uint16_t, Unit: 1 ms, Range: [0 to 216 - 1], Default: 200
  • ret_stop_deceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 216 - 1
Returns:
  • e_code – Type: int

Returns the GPIO configuration for a channel as set by performance_dc_set_gpio_configuration().

int performance_dc_set_gpio_action(PerformanceDC *performance_dc, uint8_t channel, uint32_t action)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • channel – Type: uint8_t, Range: [0 to 1]
  • action – Type: uint32_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Sets the GPIO action for the given channel.

The action can be a normal stop, a full brake or a callback. Each for a rising edge or falling edge. The actions are a bitmask they can be used at the same time. You can for example trigger a full brake and a callback at the same time or for rising and falling edge.

The deceleration speed for the normal stop can be configured with performance_dc_set_gpio_configuration().

The following constants are available for this function:

For action:

  • PERFORMANCE_DC_GPIO_ACTION_NONE = 0
  • PERFORMANCE_DC_GPIO_ACTION_NORMAL_STOP_RISING_EDGE = 1
  • PERFORMANCE_DC_GPIO_ACTION_NORMAL_STOP_FALLING_EDGE = 2
  • PERFORMANCE_DC_GPIO_ACTION_FULL_BRAKE_RISING_EDGE = 4
  • PERFORMANCE_DC_GPIO_ACTION_FULL_BRAKE_FALLING_EDGE = 8
  • PERFORMANCE_DC_GPIO_ACTION_CALLBACK_RISING_EDGE = 16
  • PERFORMANCE_DC_GPIO_ACTION_CALLBACK_FALLING_EDGE = 32
int performance_dc_get_gpio_action(PerformanceDC *performance_dc, uint8_t channel, uint32_t *ret_action)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • channel – Type: uint8_t, Range: [0 to 1]
Output Parameters:
  • ret_action – Type: uint32_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Returns the GPIO action for a channel as set by performance_dc_set_gpio_action().

The following constants are available for this function:

For ret_action:

  • PERFORMANCE_DC_GPIO_ACTION_NONE = 0
  • PERFORMANCE_DC_GPIO_ACTION_NORMAL_STOP_RISING_EDGE = 1
  • PERFORMANCE_DC_GPIO_ACTION_NORMAL_STOP_FALLING_EDGE = 2
  • PERFORMANCE_DC_GPIO_ACTION_FULL_BRAKE_RISING_EDGE = 4
  • PERFORMANCE_DC_GPIO_ACTION_FULL_BRAKE_FALLING_EDGE = 8
  • PERFORMANCE_DC_GPIO_ACTION_CALLBACK_RISING_EDGE = 16
  • PERFORMANCE_DC_GPIO_ACTION_CALLBACK_FALLING_EDGE = 32
int performance_dc_get_gpio_state(PerformanceDC *performance_dc, bool ret_gpio_state[2])
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_gpio_state – Type: bool[2]
Returns:
  • e_code – Type: int

Returns the GPIO state for both channels. True if the state is high and false if the state is low.

Advanced Functions

int performance_dc_set_drive_mode(PerformanceDC *performance_dc, uint8_t mode)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Sets the drive mode. Possible modes are:

  • 0 = Drive/Brake
  • 1 = Drive/Coast

These modes are different kinds of motor controls.

In Drive/Brake mode, the motor is always either driving or braking. There is no freewheeling. Advantages are: A more linear correlation between PWM and velocity, more exact accelerations and the possibility to drive with slower velocities.

In Drive/Coast mode, the motor is always either driving or freewheeling. Advantages are: Less current consumption and less demands on the motor and driver chip.

The following constants are available for this function:

For mode:

  • PERFORMANCE_DC_DRIVE_MODE_DRIVE_BRAKE = 0
  • PERFORMANCE_DC_DRIVE_MODE_DRIVE_COAST = 1
int performance_dc_get_drive_mode(PerformanceDC *performance_dc, uint8_t *ret_mode)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Returns the drive mode, as set by performance_dc_set_drive_mode().

The following constants are available for this function:

For ret_mode:

  • PERFORMANCE_DC_DRIVE_MODE_DRIVE_BRAKE = 0
  • PERFORMANCE_DC_DRIVE_MODE_DRIVE_COAST = 1
int performance_dc_set_pwm_frequency(PerformanceDC *performance_dc, uint16_t frequency)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • frequency – Type: uint16_t, Unit: 1 Hz, Range: [1 to 20000], Default: 15000
Returns:
  • e_code – Type: int

Sets the frequency of the PWM with which the motor is driven. Often a high frequency is less noisy and the motor runs smoother. However, with a low frequency there are less switches and therefore fewer switching losses. Also with most motors lower frequencies enable higher torque.

If you have no idea what all this means, just ignore this function and use the default frequency, it will very likely work fine.

int performance_dc_set_error_led_config(PerformanceDC *performance_dc, uint8_t config)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Configures the error LED to be either turned off, turned on, blink in heartbeat mode or show an error.

If the LED is configured to show errors it has three different states:

  • Off: No error present.
  • 1s interval blinking: Input voltage too low (below 6V).
  • 250ms interval blinking: Overtemperature or overcurrent.

The following constants are available for this function:

For config:

  • PERFORMANCE_DC_ERROR_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_ERROR_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_ERROR_LED_CONFIG_SHOW_ERROR = 3
int performance_dc_get_error_led_config(PerformanceDC *performance_dc, uint8_t *ret_config)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the LED configuration as set by performance_dc_set_error_led_config()

The following constants are available for this function:

For ret_config:

  • PERFORMANCE_DC_ERROR_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_ERROR_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_ERROR_LED_CONFIG_SHOW_ERROR = 3
int performance_dc_set_cw_led_config(PerformanceDC *performance_dc, uint8_t config)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Configures the CW LED to be either turned off, turned on, blink in heartbeat mode or if the motor turn clockwise.

The following constants are available for this function:

For config:

  • PERFORMANCE_DC_CW_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_CW_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_CW_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_CW_LED_CONFIG_SHOW_CW_AS_FORWARD = 3
  • PERFORMANCE_DC_CW_LED_CONFIG_SHOW_CW_AS_BACKWARD = 4
int performance_dc_get_cw_led_config(PerformanceDC *performance_dc, uint8_t *ret_config)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the LED configuration as set by performance_dc_set_cw_led_config()

The following constants are available for this function:

For ret_config:

  • PERFORMANCE_DC_CW_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_CW_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_CW_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_CW_LED_CONFIG_SHOW_CW_AS_FORWARD = 3
  • PERFORMANCE_DC_CW_LED_CONFIG_SHOW_CW_AS_BACKWARD = 4
int performance_dc_set_ccw_led_config(PerformanceDC *performance_dc, uint8_t config)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Configures the CCW LED to be either turned off, turned on, blink in heartbeat mode or if the motor turn counter-clockwise.

The following constants are available for this function:

For config:

  • PERFORMANCE_DC_CCW_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_CCW_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_CCW_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_CCW_LED_CONFIG_SHOW_CCW_AS_FORWARD = 3
  • PERFORMANCE_DC_CCW_LED_CONFIG_SHOW_CCW_AS_BACKWARD = 4
int performance_dc_get_ccw_led_config(PerformanceDC *performance_dc, uint8_t *ret_config)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the LED configuration as set by performance_dc_set_ccw_led_config()

The following constants are available for this function:

For ret_config:

  • PERFORMANCE_DC_CCW_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_CCW_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_CCW_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_CCW_LED_CONFIG_SHOW_CCW_AS_FORWARD = 3
  • PERFORMANCE_DC_CCW_LED_CONFIG_SHOW_CCW_AS_BACKWARD = 4
int performance_dc_set_gpio_led_config(PerformanceDC *performance_dc, uint8_t channel, uint8_t config)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • channel – Type: uint8_t, Range: [0 to 1]
  • config – Type: uint8_t, Range: See constants, Default: 4
Returns:
  • e_code – Type: int

Configures the GPIO LED to be either turned off, turned on, blink in heartbeat mode or the GPIO state.

The GPIO LED can be configured for both channels.

The following constants are available for this function:

For config:

  • PERFORMANCE_DC_GPIO_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_GPIO_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_GPIO_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_GPIO_LED_CONFIG_SHOW_GPIO_ACTIVE_HIGH = 3
  • PERFORMANCE_DC_GPIO_LED_CONFIG_SHOW_GPIO_ACTIVE_LOW = 4
int performance_dc_get_gpio_led_config(PerformanceDC *performance_dc, uint8_t channel, uint8_t *ret_config)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • channel – Type: uint8_t, Range: [0 to 1]
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 4
Returns:
  • e_code – Type: int

Returns the LED configuration as set by performance_dc_set_gpio_led_config()

The following constants are available for this function:

For ret_config:

  • PERFORMANCE_DC_GPIO_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_GPIO_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_GPIO_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_GPIO_LED_CONFIG_SHOW_GPIO_ACTIVE_HIGH = 3
  • PERFORMANCE_DC_GPIO_LED_CONFIG_SHOW_GPIO_ACTIVE_LOW = 4
int performance_dc_get_spitfp_error_count(PerformanceDC *performance_dc, uint32_t *ret_error_count_ack_checksum, uint32_t *ret_error_count_message_checksum, uint32_t *ret_error_count_frame, uint32_t *ret_error_count_overflow)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_error_count_ack_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_message_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_frame – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_overflow – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

int performance_dc_set_status_led_config(PerformanceDC *performance_dc, uint8_t config)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • PERFORMANCE_DC_STATUS_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_STATUS_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_STATUS_LED_CONFIG_SHOW_STATUS = 3
int performance_dc_get_status_led_config(PerformanceDC *performance_dc, uint8_t *ret_config)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the configuration as set by performance_dc_set_status_led_config()

The following constants are available for this function:

For ret_config:

  • PERFORMANCE_DC_STATUS_LED_CONFIG_OFF = 0
  • PERFORMANCE_DC_STATUS_LED_CONFIG_ON = 1
  • PERFORMANCE_DC_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • PERFORMANCE_DC_STATUS_LED_CONFIG_SHOW_STATUS = 3
int performance_dc_get_chip_temperature(PerformanceDC *performance_dc, int16_t *ret_temperature)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_temperature – Type: int16_t, Unit: 1 °C, Range: [-215 to 215 - 1]
Returns:
  • e_code – Type: int

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

int performance_dc_reset(PerformanceDC *performance_dc)
Parameters:
  • performance_dc – Type: PerformanceDC *
Returns:
  • e_code – Type: int

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

int performance_dc_get_identity(PerformanceDC *performance_dc, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_uid – Type: char[8]
  • ret_connected_uid – Type: char[8]
  • ret_position – Type: char, Range: ['a' to 'h', 'z']
  • ret_hardware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_firmware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_device_identifier – Type: uint16_t, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

void performance_dc_register_callback(PerformanceDC *performance_dc, int16_t callback_id, void (*function)(void), void *user_data)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • callback_id – Type: int16_t
  • function – Type: void (*)(void)
  • user_data – Type: void *

Registers the given function with the given callback_id. The user_data will be passed as the last parameter to the function.

The available callback IDs with corresponding function signatures are listed below.

int performance_dc_set_emergency_shutdown_callback_configuration(PerformanceDC *performance_dc, bool enabled)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Enable/Disable PERFORMANCE_DC_CALLBACK_EMERGENCY_SHUTDOWN callback.

int performance_dc_get_emergency_shutdown_callback_configuration(PerformanceDC *performance_dc, bool *ret_enabled)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_enabled – Type: bool, Default: true
Returns:
  • e_code – Type: int

Returns the callback configuration as set by performance_dc_set_emergency_shutdown_callback_configuration().

int performance_dc_set_velocity_reached_callback_configuration(PerformanceDC *performance_dc, bool enabled)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Enable/Disable PERFORMANCE_DC_CALLBACK_VELOCITY_REACHED callback.

int performance_dc_get_velocity_reached_callback_configuration(PerformanceDC *performance_dc, bool *ret_enabled)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the callback configuration as set by performance_dc_set_velocity_reached_callback_configuration().

int performance_dc_set_current_velocity_callback_configuration(PerformanceDC *performance_dc, uint32_t period, bool value_has_to_change)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • value_has_to_change – Type: bool, Default: false
Returns:
  • e_code – Type: int

The period is the period with which the PERFORMANCE_DC_CALLBACK_CURRENT_VELOCITY callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

int performance_dc_get_current_velocity_callback_configuration(PerformanceDC *performance_dc, uint32_t *ret_period, bool *ret_value_has_to_change)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • ret_value_has_to_change – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the callback configuration as set by performance_dc_set_current_velocity_callback_configuration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the performance_dc_register_callback() function:

void my_callback(int value, void *user_data) {
    printf("Value: %d\n", value);
}

performance_dc_register_callback(&performance_dc,
                                 PERFORMANCE_DC_CALLBACK_EXAMPLE,
                                 (void (*)(void))my_callback,
                                 NULL);

The available constants with corresponding function signatures are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

PERFORMANCE_DC_CALLBACK_EMERGENCY_SHUTDOWN
void callback(void *user_data)
Callback Parameters:
  • user_data – Type: void *

This callback is triggered if either the current consumption is too high or the temperature of the driver chip is too high (above 150°C) or the user defined thermal shutdown is triggered (see performance_dc_set_thermal_shutdown()). n case of a voltage below 6V (input voltage) this callback is triggered as well.

If this callback is triggered, the driver chip gets disabled at the same time. That means, performance_dc_set_enabled() has to be called to drive the motor again.

PERFORMANCE_DC_CALLBACK_VELOCITY_REACHED
void callback(int16_t velocity, void *user_data)
Callback Parameters:
  • velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1]
  • user_data – Type: void *

This callback is triggered whenever a set velocity is reached. For example: If a velocity of 0 is present, acceleration is set to 5000 and velocity to 10000, the PERFORMANCE_DC_CALLBACK_VELOCITY_REACHED callback will be triggered after about 2 seconds, when the set velocity is actually reached.

Note

Since we can't get any feedback from the DC motor, this only works if the acceleration (see performance_dc_set_motion()) is set smaller or equal to the maximum acceleration of the motor. Otherwise the motor will lag behind the control value and the callback will be triggered too early.

PERFORMANCE_DC_CALLBACK_CURRENT_VELOCITY
void callback(int16_t velocity, void *user_data)
Callback Parameters:
  • velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1]
  • user_data – Type: void *

This callback is triggered with the period that is set by performance_dc_set_current_velocity_callback_configuration(). The parameter is the current velocity used by the motor.

The PERFORMANCE_DC_CALLBACK_CURRENT_VELOCITY callback is only triggered after the set period if there is a change in the velocity.

PERFORMANCE_DC_CALLBACK_GPIO_STATE
void callback(bool gpio_state[2], void *user_data)
Callback Parameters:
  • gpio_state – Type: bool[2]
  • user_data – Type: void *

This callback is triggered by GPIO changes if it is activated through performance_dc_set_gpio_action().

New in version 2.0.1 (Plugin).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

int performance_dc_get_api_version(PerformanceDC *performance_dc, uint8_t ret_api_version[3])
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_api_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

int performance_dc_get_response_expected(PerformanceDC *performance_dc, uint8_t function_id, bool *ret_response_expected)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • function_id – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_response_expected – Type: bool
Returns:
  • e_code – Type: int

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by performance_dc_set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • PERFORMANCE_DC_FUNCTION_SET_ENABLED = 1
  • PERFORMANCE_DC_FUNCTION_SET_VELOCITY = 3
  • PERFORMANCE_DC_FUNCTION_SET_MOTION = 6
  • PERFORMANCE_DC_FUNCTION_FULL_BRAKE = 8
  • PERFORMANCE_DC_FUNCTION_SET_DRIVE_MODE = 9
  • PERFORMANCE_DC_FUNCTION_SET_PWM_FREQUENCY = 11
  • PERFORMANCE_DC_FUNCTION_SET_THERMAL_SHUTDOWN = 14
  • PERFORMANCE_DC_FUNCTION_SET_GPIO_CONFIGURATION = 16
  • PERFORMANCE_DC_FUNCTION_SET_GPIO_ACTION = 18
  • PERFORMANCE_DC_FUNCTION_SET_ERROR_LED_CONFIG = 21
  • PERFORMANCE_DC_FUNCTION_SET_CW_LED_CONFIG = 23
  • PERFORMANCE_DC_FUNCTION_SET_CCW_LED_CONFIG = 25
  • PERFORMANCE_DC_FUNCTION_SET_GPIO_LED_CONFIG = 27
  • PERFORMANCE_DC_FUNCTION_SET_EMERGENCY_SHUTDOWN_CALLBACK_CONFIGURATION = 29
  • PERFORMANCE_DC_FUNCTION_SET_VELOCITY_REACHED_CALLBACK_CONFIGURATION = 31
  • PERFORMANCE_DC_FUNCTION_SET_CURRENT_VELOCITY_CALLBACK_CONFIGURATION = 33
  • PERFORMANCE_DC_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • PERFORMANCE_DC_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • PERFORMANCE_DC_FUNCTION_RESET = 243
  • PERFORMANCE_DC_FUNCTION_WRITE_UID = 248
int performance_dc_set_response_expected(PerformanceDC *performance_dc, uint8_t function_id, bool response_expected)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • function_id – Type: uint8_t, Range: See constants
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • PERFORMANCE_DC_FUNCTION_SET_ENABLED = 1
  • PERFORMANCE_DC_FUNCTION_SET_VELOCITY = 3
  • PERFORMANCE_DC_FUNCTION_SET_MOTION = 6
  • PERFORMANCE_DC_FUNCTION_FULL_BRAKE = 8
  • PERFORMANCE_DC_FUNCTION_SET_DRIVE_MODE = 9
  • PERFORMANCE_DC_FUNCTION_SET_PWM_FREQUENCY = 11
  • PERFORMANCE_DC_FUNCTION_SET_THERMAL_SHUTDOWN = 14
  • PERFORMANCE_DC_FUNCTION_SET_GPIO_CONFIGURATION = 16
  • PERFORMANCE_DC_FUNCTION_SET_GPIO_ACTION = 18
  • PERFORMANCE_DC_FUNCTION_SET_ERROR_LED_CONFIG = 21
  • PERFORMANCE_DC_FUNCTION_SET_CW_LED_CONFIG = 23
  • PERFORMANCE_DC_FUNCTION_SET_CCW_LED_CONFIG = 25
  • PERFORMANCE_DC_FUNCTION_SET_GPIO_LED_CONFIG = 27
  • PERFORMANCE_DC_FUNCTION_SET_EMERGENCY_SHUTDOWN_CALLBACK_CONFIGURATION = 29
  • PERFORMANCE_DC_FUNCTION_SET_VELOCITY_REACHED_CALLBACK_CONFIGURATION = 31
  • PERFORMANCE_DC_FUNCTION_SET_CURRENT_VELOCITY_CALLBACK_CONFIGURATION = 33
  • PERFORMANCE_DC_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • PERFORMANCE_DC_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • PERFORMANCE_DC_FUNCTION_RESET = 243
  • PERFORMANCE_DC_FUNCTION_WRITE_UID = 248
int performance_dc_set_response_expected_all(PerformanceDC *performance_dc, bool response_expected)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

int performance_dc_set_bootloader_mode(PerformanceDC *performance_dc, uint8_t mode, uint8_t *ret_status)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • mode – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_status – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • PERFORMANCE_DC_BOOTLOADER_MODE_BOOTLOADER = 0
  • PERFORMANCE_DC_BOOTLOADER_MODE_FIRMWARE = 1
  • PERFORMANCE_DC_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • PERFORMANCE_DC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • PERFORMANCE_DC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For ret_status:

  • PERFORMANCE_DC_BOOTLOADER_STATUS_OK = 0
  • PERFORMANCE_DC_BOOTLOADER_STATUS_INVALID_MODE = 1
  • PERFORMANCE_DC_BOOTLOADER_STATUS_NO_CHANGE = 2
  • PERFORMANCE_DC_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • PERFORMANCE_DC_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • PERFORMANCE_DC_BOOTLOADER_STATUS_CRC_MISMATCH = 5
int performance_dc_get_bootloader_mode(PerformanceDC *performance_dc, uint8_t *ret_mode)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Returns the current bootloader mode, see performance_dc_set_bootloader_mode().

The following constants are available for this function:

For ret_mode:

  • PERFORMANCE_DC_BOOTLOADER_MODE_BOOTLOADER = 0
  • PERFORMANCE_DC_BOOTLOADER_MODE_FIRMWARE = 1
  • PERFORMANCE_DC_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • PERFORMANCE_DC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • PERFORMANCE_DC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
int performance_dc_set_write_firmware_pointer(PerformanceDC *performance_dc, uint32_t pointer)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • pointer – Type: uint32_t, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Sets the firmware pointer for performance_dc_write_firmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int performance_dc_write_firmware(PerformanceDC *performance_dc, uint8_t data[64], uint8_t *ret_status)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • data – Type: uint8_t[64], Range: [0 to 255]
Output Parameters:
  • ret_status – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Writes 64 Bytes of firmware at the position as written by performance_dc_set_write_firmware_pointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int performance_dc_write_uid(PerformanceDC *performance_dc, uint32_t uid)
Parameters:
  • performance_dc – Type: PerformanceDC *
  • uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

int performance_dc_read_uid(PerformanceDC *performance_dc, uint32_t *ret_uid)
Parameters:
  • performance_dc – Type: PerformanceDC *
Output Parameters:
  • ret_uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

PERFORMANCE_DC_DEVICE_IDENTIFIER

This constant is used to identify a Performance DC Bricklet.

The performance_dc_get_identity() function and the IPCON_CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

PERFORMANCE_DC_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Performance DC Bricklet.