LabVIEW - IMU Brick 2.0

This is the description of the LabVIEW API bindings for the IMU Brick 2.0. General information and technical specifications for the IMU Brick 2.0 are summarized in its hardware description.

An installation guide for the LabVIEW API bindings is part of their general description.

API

Generally, every method of the LabVIEW bindings that outputs a value can report a Tinkerforge.TimeoutException. This error gets reported if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

Basic Functions

BrickIMUV2(uid, ipcon) → imuV2
Input:
  • uid -- String
  • ipcon -- .NET Refnum (IPConnection)
Output:
  • imuV2 -- .NET Refnum (BrickIMUV2)

Creates an object with the unique device ID uid. This object can then be used after the IP Connection is connected (see examples above).

BrickIMUV2.GetOrientation() → heading, roll, pitch
Output:
  • heading -- Int16
  • roll -- Int16
  • pitch -- Int16

Returns the current orientation (heading, roll, pitch) of the IMU Brick as independent Euler angles in 1/16 degree. Note that Euler angles always experience a gimbal lock. We recommend that you use quaternions instead, if you need the absolute orientation.

The rotation angle has the following ranges:

  • heading: 0° to 360°
  • roll: -90° to +90°
  • pitch: -180° to +180°

If you want to get the orientation periodically, it is recommended to use the OrientationCallback callback and set the period with SetOrientationPeriod().

BrickIMUV2.GetLinearAcceleration() → x, y, z
Output:
  • x -- Int16
  • y -- Int16
  • z -- Int16

Returns the linear acceleration of the IMU Brick for the x, y and z axis in 1/100 m/s².

The linear acceleration is the acceleration in each of the three axis of the IMU Brick with the influences of gravity removed.

It is also possible to get the gravity vector with the influence of linear acceleration removed, see GetGravityVector().

If you want to get the linear acceleration periodically, it is recommended to use the LinearAccelerationCallback callback and set the period with SetLinearAccelerationPeriod().

BrickIMUV2.GetGravityVector() → x, y, z
Output:
  • x -- Int16
  • y -- Int16
  • z -- Int16

Returns the current gravity vector of the IMU Brick for the x, y and z axis in 1/100 m/s².

The gravity vector is the acceleration that occurs due to gravity. Influences of additional linear acceleration are removed.

It is also possible to get the linear acceleration with the influence of gravity removed, see GetLinearAcceleration().

If you want to get the gravity vector periodically, it is recommended to use the GravityVectorCallback callback and set the period with SetGravityVectorPeriod().

BrickIMUV2.GetQuaternion() → w, x, y, z
Output:
  • w -- Int16
  • x -- Int16
  • y -- Int16
  • z -- Int16

Returns the current orientation (w, x, y, z) of the IMU Brick as quaternions.

You have to divide the returns values by 16383 (14 bit) to get the usual range of -1.0 to +1.0 for quaternions.

If you want to get the quaternions periodically, it is recommended to use the QuaternionCallback callback and set the period with SetQuaternionPeriod().

BrickIMUV2.GetAllData() → acceleration, magneticField, angularVelocity, eulerAngle, quaternion, linearAcceleration, gravityVector, temperature, calibrationStatus
Output:
  • acceleration -- Int16[3]
  • magneticField -- Int16[3]
  • angularVelocity -- Int16[3]
  • eulerAngle -- Int16[3]
  • quaternion -- Int16[4]
  • linearAcceleration -- Int16[3]
  • gravityVector -- Int16[3]
  • temperature -- Int16
  • calibrationStatus -- Byte

Return all of the available data of the IMU Brick.

The calibration status consists of four pairs of two bits. Each pair of bits represents the status of the current calibration.

  • bit 0-1: Magnetometer
  • bit 2-3: Accelerometer
  • bit 4-5: Gyroscope
  • bit 6-7: System

A value of 0 means for "not calibrated" and a value of 3 means "fully calibrated". In your program you should always be able to ignore the calibration status, it is used by the calibration window of the Brick Viewer and it can be ignored after the first calibration. See the documentation in the calibration window for more information regarding the calibration of the IMU Brick.

If you want to get the data periodically, it is recommended to use the AllDataCallback callback and set the period with SetAllDataPeriod().

BrickIMUV2.LedsOn()

Turns the orientation and direction LEDs of the IMU Brick on.

BrickIMUV2.LedsOff()

Turns the orientation and direction LEDs of the IMU Brick off.

BrickIMUV2.AreLedsOn() → leds
Output:
  • leds -- Boolean

Returns true if the orientation and direction LEDs of the IMU Brick are on, false otherwise.

Advanced Functions

BrickIMUV2.GetAcceleration() → x, y, z
Output:
  • x -- Int16
  • y -- Int16
  • z -- Int16

Returns the calibrated acceleration from the accelerometer for the x, y and z axis in 1/100 m/s².

If you want to get the acceleration periodically, it is recommended to use the AccelerationCallback callback and set the period with SetAccelerationPeriod().

BrickIMUV2.GetMagneticField() → x, y, z
Output:
  • x -- Int16
  • y -- Int16
  • z -- Int16

Returns the calibrated magnetic field from the magnetometer for the x, y and z axis in 1/16 µT (Microtesla).

If you want to get the magnetic field periodically, it is recommended to use the MagneticFieldCallback callback and set the period with SetMagneticFieldPeriod().

BrickIMUV2.GetAngularVelocity() → x, y, z
Output:
  • x -- Int16
  • y -- Int16
  • z -- Int16

Returns the calibrated angular velocity from the gyroscope for the x, y and z axis in 1/16 °/s.

If you want to get the angular velocity periodically, it is recommended to use the AngularVelocityCallback acallback nd set the period with SetAngularVelocityPeriod().

BrickIMUV2.GetTemperature() → temperature
Output:
  • temperature -- Int16

Returns the temperature of the IMU Brick. The temperature is given in °C. The temperature is measured in the core of the BNO055 IC, it is not the ambient temperature

BrickIMUV2.SaveCalibration() → calibrationDone
Output:
  • calibrationDone -- Boolean

A call of this function saves the current calibration to be used as a starting point for the next restart of continuous calibration of the IMU Brick.

A return value of true means that the calibration could be used and false means that it could not be used (this happens if the calibration status is not "fully calibrated").

This function is used by the calibration window of the Brick Viewer, you should not need to call it in your program.

BrickIMUV2.SetSensorConfiguration(magnetometerRate, gyroscopeRange, gyroscopeBandwidth, accelerometerRange, accelerometerBandwidth)
Input:
  • magnetometerRate -- Byte
  • gyroscopeRange -- Byte
  • gyroscopeBandwidth -- Byte
  • accelerometerRange -- Byte
  • accelerometerBandwidth -- Byte

Sets the available sensor configuration for the Magnetometer, Gyroscope and Accelerometer. The Accelerometer Range is user selectable in all fusion modes, all other configurations are auto-controlled in fusion mode.

The default values are:

  • Magnetometer Rate 20Hz
  • Gyroscope Range 2000°/s
  • Gyroscope Bandwidth 32Hz
  • Accelerometer Range +/-4G
  • Accelerometer Bandwidth 62.5Hz

The following constants are available for this function:

  • BrickIMUV2.MAGNETOMETER_RATE_2HZ = 0
  • BrickIMUV2.MAGNETOMETER_RATE_6HZ = 1
  • BrickIMUV2.MAGNETOMETER_RATE_8HZ = 2
  • BrickIMUV2.MAGNETOMETER_RATE_10HZ = 3
  • BrickIMUV2.MAGNETOMETER_RATE_15HZ = 4
  • BrickIMUV2.MAGNETOMETER_RATE_20HZ = 5
  • BrickIMUV2.MAGNETOMETER_RATE_25HZ = 6
  • BrickIMUV2.MAGNETOMETER_RATE_30HZ = 7
  • BrickIMUV2.GYROSCOPE_RANGE_2000DPS = 0
  • BrickIMUV2.GYROSCOPE_RANGE_1000DPS = 1
  • BrickIMUV2.GYROSCOPE_RANGE_500DPS = 2
  • BrickIMUV2.GYROSCOPE_RANGE_250DPS = 3
  • BrickIMUV2.GYROSCOPE_RANGE_125DPS = 4
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_32HZ = 7
  • BrickIMUV2.ACCELEROMETER_RANGE_2G = 0
  • BrickIMUV2.ACCELEROMETER_RANGE_4G = 1
  • BrickIMUV2.ACCELEROMETER_RANGE_8G = 2
  • BrickIMUV2.ACCELEROMETER_RANGE_16G = 3
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_1000HZ = 7

New in version 2.0.5 (Firmware).

BrickIMUV2.GetSensorConfiguration() → magnetometerRate, gyroscopeRange, gyroscopeBandwidth, accelerometerRange, accelerometerBandwidth
Output:
  • magnetometerRate -- Byte
  • gyroscopeRange -- Byte
  • gyroscopeBandwidth -- Byte
  • accelerometerRange -- Byte
  • accelerometerBandwidth -- Byte

Returns the sensor configuration as set by SetSensorConfiguration().

The following constants are available for this function:

  • BrickIMUV2.MAGNETOMETER_RATE_2HZ = 0
  • BrickIMUV2.MAGNETOMETER_RATE_6HZ = 1
  • BrickIMUV2.MAGNETOMETER_RATE_8HZ = 2
  • BrickIMUV2.MAGNETOMETER_RATE_10HZ = 3
  • BrickIMUV2.MAGNETOMETER_RATE_15HZ = 4
  • BrickIMUV2.MAGNETOMETER_RATE_20HZ = 5
  • BrickIMUV2.MAGNETOMETER_RATE_25HZ = 6
  • BrickIMUV2.MAGNETOMETER_RATE_30HZ = 7
  • BrickIMUV2.GYROSCOPE_RANGE_2000DPS = 0
  • BrickIMUV2.GYROSCOPE_RANGE_1000DPS = 1
  • BrickIMUV2.GYROSCOPE_RANGE_500DPS = 2
  • BrickIMUV2.GYROSCOPE_RANGE_250DPS = 3
  • BrickIMUV2.GYROSCOPE_RANGE_125DPS = 4
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_32HZ = 7
  • BrickIMUV2.ACCELEROMETER_RANGE_2G = 0
  • BrickIMUV2.ACCELEROMETER_RANGE_4G = 1
  • BrickIMUV2.ACCELEROMETER_RANGE_8G = 2
  • BrickIMUV2.ACCELEROMETER_RANGE_16G = 3
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_1000HZ = 7

New in version 2.0.5 (Firmware).

BrickIMUV2.SetSensorFusionMode(mode)
Input:
  • mode -- Byte

If the fusion mode is turned off, the functions GetAcceleration(), GetMagneticField() and GetAngularVelocity() return uncalibrated and uncompensated sensor data. All other sensor data getters return no data.

Since firmware version 2.0.6 you can also use a fusion mode without magnetometer. In this mode the calculated orientation is relative (with magnetometer it is absolute with respect to the earth). However, the calculation can't be influenced by spurious magnetic fields.

Since firmware version 2.0.13 you can also use a fusion mode without fast magnetometer calibration. This mode is the same as the normal fusion mode, but the fast magnetometer calibration is turned off. So to find the orientation the first time will likely take longer, but small magnetic influences might not affect the automatic calibration as much.

By default sensor fusion is on.

The following constants are available for this function:

  • BrickIMUV2.SENSOR_FUSION_OFF = 0
  • BrickIMUV2.SENSOR_FUSION_ON = 1
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3

New in version 2.0.5 (Firmware).

BrickIMUV2.GetSensorFusionMode() → mode
Output:
  • mode -- Byte

Returns the sensor fusion mode as set by SetSensorFusionMode().

The following constants are available for this function:

  • BrickIMUV2.SENSOR_FUSION_OFF = 0
  • BrickIMUV2.SENSOR_FUSION_ON = 1
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3

New in version 2.0.5 (Firmware).

BrickIMUV2.GetAPIVersion() → apiVersion
Output:
  • apiVersion -- Byte[3]

Returns the version of the API definition (major, minor, revision) implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickIMUV2.GetResponseExpected(functionId) → responseExpected
Input:
  • functionId -- Byte
Output:
  • responseExpected -- Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

See SetResponseExpected() for the list of function ID constants available for this function.

BrickIMUV2.SetResponseExpected(functionId, responseExpected)
Input:
  • functionId -- Byte
  • responseExpected -- Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following function ID constants are available for this function:

  • BrickIMUV2.FUNCTION_LEDS_ON = 10
  • BrickIMUV2.FUNCTION_LEDS_OFF = 11
  • BrickIMUV2.FUNCTION_SET_ACCELERATION_PERIOD = 14
  • BrickIMUV2.FUNCTION_SET_MAGNETIC_FIELD_PERIOD = 16
  • BrickIMUV2.FUNCTION_SET_ANGULAR_VELOCITY_PERIOD = 18
  • BrickIMUV2.FUNCTION_SET_TEMPERATURE_PERIOD = 20
  • BrickIMUV2.FUNCTION_SET_ORIENTATION_PERIOD = 22
  • BrickIMUV2.FUNCTION_SET_LINEAR_ACCELERATION_PERIOD = 24
  • BrickIMUV2.FUNCTION_SET_GRAVITY_VECTOR_PERIOD = 26
  • BrickIMUV2.FUNCTION_SET_QUATERNION_PERIOD = 28
  • BrickIMUV2.FUNCTION_SET_ALL_DATA_PERIOD = 30
  • BrickIMUV2.FUNCTION_SET_SENSOR_CONFIGURATION = 41
  • BrickIMUV2.FUNCTION_SET_SENSOR_FUSION_MODE = 43
  • BrickIMUV2.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BrickIMUV2.FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BrickIMUV2.FUNCTION_ENABLE_STATUS_LED = 238
  • BrickIMUV2.FUNCTION_DISABLE_STATUS_LED = 239
  • BrickIMUV2.FUNCTION_RESET = 243
BrickIMUV2.SetResponseExpectedAll(responseExpected)
Input:
  • responseExpected -- Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

BrickIMUV2.SetSPITFPBaudrateConfig(enableDynamicBaudrate, minimumDynamicBaudrate)
Input:
  • enableDynamicBaudrate -- Boolean
  • minimumDynamicBaudrate -- Int64

The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.

The baudrate will be increased exponentially if lots of data is send/received and decreased linearly if little data is send/received.

This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.

In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.

The maximum value of the baudrate can be set per port with the function SetSPITFPBaudrate(). If the dynamic baudrate is disabled, the baudrate as set by SetSPITFPBaudrate() will be used statically.

The minimum dynamic baudrate has a value range of 400000 to 2000000 baud.

By default dynamic baudrate is enabled and the minimum dynamic baudrate is 400000.

New in version 2.0.10 (Firmware).

BrickIMUV2.GetSPITFPBaudrateConfig() → enableDynamicBaudrate, minimumDynamicBaudrate
Output:
  • enableDynamicBaudrate -- Boolean
  • minimumDynamicBaudrate -- Int64

Returns the baudrate config, see SetSPITFPBaudrateConfig().

New in version 2.0.10 (Firmware).

BrickIMUV2.GetSendTimeoutCount(communicationMethod) → timeoutCount
Input:
  • communicationMethod -- Byte
Output:
  • timeoutCount -- Int64

Returns the timeout count for the different communication methods.

The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.

This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0.

The following constants are available for this function:

  • BrickIMUV2.COMMUNICATION_METHOD_NONE = 0
  • BrickIMUV2.COMMUNICATION_METHOD_USB = 1
  • BrickIMUV2.COMMUNICATION_METHOD_SPI_STACK = 2
  • BrickIMUV2.COMMUNICATION_METHOD_CHIBI = 3
  • BrickIMUV2.COMMUNICATION_METHOD_RS485 = 4
  • BrickIMUV2.COMMUNICATION_METHOD_WIFI = 5
  • BrickIMUV2.COMMUNICATION_METHOD_ETHERNET = 6
  • BrickIMUV2.COMMUNICATION_METHOD_WIFI_V2 = 7

New in version 2.0.7 (Firmware).

BrickIMUV2.SetSPITFPBaudrate(brickletPort, baudrate)
Input:
  • brickletPort -- Char
  • baudrate -- Int64

Sets the baudrate for a specific Bricklet port ('a' - 'd'). The baudrate can be in the range 400000 to 2000000.

If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference (see GetSPITFPErrorCount()) you can decrease the baudrate.

If the dynamic baudrate feature is enabled, the baudrate set by this function corresponds to the maximum baudrate (see SetSPITFPBaudrateConfig()).

Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in you applications we recommend to not change the baudrate.

The default baudrate for all ports is 1400000.

New in version 2.0.5 (Firmware).

BrickIMUV2.GetSPITFPBaudrate(brickletPort) → baudrate
Input:
  • brickletPort -- Char
Output:
  • baudrate -- Int64

Returns the baudrate for a given Bricklet port, see SetSPITFPBaudrate().

New in version 2.0.5 (Firmware).

BrickIMUV2.GetSPITFPErrorCount(brickletPort) → errorCountACKChecksum, errorCountMessageChecksum, errorCountFrame, errorCountOverflow
Input:
  • brickletPort -- Char
Output:
  • errorCountACKChecksum -- Int64
  • errorCountMessageChecksum -- Int64
  • errorCountFrame -- Int64
  • errorCountOverflow -- Int64

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side.

New in version 2.0.5 (Firmware).

BrickIMUV2.EnableStatusLED()

Enables the status LED.

The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.

The default state is enabled.

BrickIMUV2.DisableStatusLED()

Disables the status LED.

The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.

The default state is enabled.

BrickIMUV2.IsStatusLEDEnabled() → enabled
Output:
  • enabled -- Boolean

Returns true if the status LED is enabled, false otherwise.

BrickIMUV2.GetProtocol1BrickletName(port) → protocolVersion, firmwareVersion, name
Input:
  • port -- Char
Output:
  • protocolVersion -- Byte
  • firmwareVersion -- Byte[3]
  • name -- String

Returns the firmware and protocol version and the name of the Bricklet for a given port.

This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet plugins.

BrickIMUV2.GetChipTemperature() → temperature
Output:
  • temperature -- Int16

Returns the temperature in °C/10 as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has an accuracy of +-15%. Practically it is only useful as an indicator for temperature changes.

BrickIMUV2.Reset()

Calling this function will reset the Brick. Calling this function on a Brick inside of a stack will reset the whole stack.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickIMUV2.GetIdentity() → uid, connectedUid, position, hardwareVersion, firmwareVersion, deviceIdentifier
Output:
  • uid -- String
  • connectedUid -- String
  • position -- Char
  • hardwareVersion -- Byte[3]
  • firmwareVersion -- Byte[3]
  • deviceIdentifier -- Int32

Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be '0'-'8' (stack position).

The device identifier numbers can be found here. There is also a constant for the device identifier of this Brick.

Callback Configuration Functions

BrickIMUV2.SetAccelerationPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the AccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

The default value is 0.

BrickIMUV2.GetAccelerationPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetAccelerationPeriod().

BrickIMUV2.SetMagneticFieldPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the MagneticFieldCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetMagneticFieldPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetMagneticFieldPeriod().

BrickIMUV2.SetAngularVelocityPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the AngularVelocityCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetAngularVelocityPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetAngularVelocityPeriod().

BrickIMUV2.SetTemperaturePeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the TemperatureCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetTemperaturePeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetTemperaturePeriod().

BrickIMUV2.SetOrientationPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the OrientationCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetOrientationPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetOrientationPeriod().

BrickIMUV2.SetLinearAccelerationPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the LinearAccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetLinearAccelerationPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetLinearAccelerationPeriod().

BrickIMUV2.SetGravityVectorPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the GravityVectorCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetGravityVectorPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetGravityVectorPeriod().

BrickIMUV2.SetQuaternionPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the QuaternionCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetQuaternionPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetQuaternionPeriod().

BrickIMUV2.SetAllDataPeriod(period)
Input:
  • period -- Int64

Sets the period in ms with which the AllDataCallback callback is triggered periodically. A value of 0 turns the callback off.

BrickIMUV2.GetAllDataPeriod() → period
Output:
  • period -- Int64

Returns the period as set by SetAllDataPeriod().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a function to a callback property of the device object. The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

event BrickIMUV2.AccelerationCallback(sender, x, y, z)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • x -- Int16
  • y -- Int16
  • z -- Int16

This callback is triggered periodically with the period that is set by SetAccelerationPeriod(). The parameters are the acceleration for the x, y and z axis.

event BrickIMUV2.MagneticFieldCallback(sender, x, y, z)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • x -- Int16
  • y -- Int16
  • z -- Int16

This callback is triggered periodically with the period that is set by SetMagneticFieldPeriod(). The parameters are the magnetic field for the x, y and z axis.

event BrickIMUV2.AngularVelocityCallback(sender, x, y, z)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • x -- Int16
  • y -- Int16
  • z -- Int16

This callback is triggered periodically with the period that is set by SetAngularVelocityPeriod(). The parameters are the angular velocity for the x, y and z axis.

event BrickIMUV2.TemperatureCallback(sender, temperature)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • temperature -- Int16

This callback is triggered periodically with the period that is set by SetTemperaturePeriod(). The parameter is the temperature.

event BrickIMUV2.LinearAccelerationCallback(sender, x, y, z)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • x -- Int16
  • y -- Int16
  • z -- Int16

This callback is triggered periodically with the period that is set by SetLinearAccelerationPeriod(). The parameters are the linear acceleration for the x, y and z axis.

event BrickIMUV2.GravityVectorCallback(sender, x, y, z)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • x -- Int16
  • y -- Int16
  • z -- Int16

This callback is triggered periodically with the period that is set by SetGravityVectorPeriod(). The parameters gravity vector for the x, y and z axis.

event BrickIMUV2.OrientationCallback(sender, heading, roll, pitch)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • heading -- Int16
  • roll -- Int16
  • pitch -- Int16

This callback is triggered periodically with the period that is set by SetOrientationPeriod(). The parameters are the orientation (heading (yaw), roll, pitch) of the IMU Brick in Euler angles. See GetOrientation() for details.

event BrickIMUV2.QuaternionCallback(sender, w, x, y, z)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • w -- Int16
  • x -- Int16
  • y -- Int16
  • z -- Int16

This callback is triggered periodically with the period that is set by SetQuaternionPeriod(). The parameters are the orientation (x, y, z, w) of the IMU Brick in quaternions. See GetQuaternion() for details.

event BrickIMUV2.AllDataCallback(sender, acceleration, magneticField, angularVelocity, eulerAngle, quaternion, linearAcceleration, gravityVector, temperature, calibrationStatus)
Input:
  • sender -- .NET Refnum (BrickIMUV2)
  • acceleration -- Int16[3]
  • magneticField -- Int16[3]
  • angularVelocity -- Int16[3]
  • eulerAngle -- Int16[3]
  • quaternion -- Int16[4]
  • linearAcceleration -- Int16[3]
  • gravityVector -- Int16[3]
  • temperature -- Int16
  • calibrationStatus -- Byte

This callback is triggered periodically with the period that is set by SetAllDataPeriod(). The parameters are as for GetAllData().

Constants

BrickIMUV2.DEVICE_IDENTIFIER

This constant is used to identify a IMU Brick 2.0.

The GetIdentity() function and the EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

BrickIMUV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a IMU Brick 2.0.