Python - OLED 64x48 Bricklet

This is the description of the Python API bindings for the OLED 64x48 Bricklet. General information and technical specifications for the OLED 64x48 Bricklet are summarized in its hardware description.

An installation guide for the Python API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Hello World

Download (example_hello_world.py)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#!/usr/bin/env python
# -*- coding: utf-8 -*-

HOST = "localhost"
PORT = 4223
UID = "XYZ" # Change XYZ to the UID of your OLED 64x48 Bricklet

from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_oled_64x48 import BrickletOLED64x48

if __name__ == "__main__":
    ipcon = IPConnection() # Create IP connection
    oled = BrickletOLED64x48(UID, ipcon) # Create device object

    ipcon.connect(HOST, PORT) # Connect to brickd
    # Don't use device before ipcon is connected

    # Clear display
    oled.clear_display()

    # Write "Hello World" starting from upper left corner of the screen
    oled.write_line(0, 0, "Hello World")

    input("Press key to exit\n") # Use raw_input() in Python 2
    ipcon.disconnect()

Pixel Matrix

Download (example_pixel_matrix.py)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python
# -*- coding: utf-8 -*-

HOST = "localhost"
PORT = 4223
UID = "XYZ" # Change XYZ to the UID of your OLED 64x48 Bricklet
WIDTH = 64 # Columns (each 1 pixel wide)
HEIGHT = 6 # Rows (each 8 pixels high)

from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_oled_64x48 import BrickletOLED64x48

def draw_matrix(oled, start_column, start_row, column_count, row_count, pixels):
    pages = []

    # Convert pixel matrix into 8bit pages
    for row in range(row_count):
        pages.append([])

        for column in range(column_count):
            page = 0

            for bit in range(8):
                if pixels[(row * 8) + bit][column]:
                    page |= 1 << bit

            pages[row].append(page)

    # Merge page matrix into single page array
    data = []

    for row in range(row_count):
        for column in range(column_count):
            data.append(pages[row][column])

    # Set new window
    oled.new_window(start_column, start_column + column_count - 1,
                    start_row, start_row + row_count - 1)

    # Write page data in 64 byte blocks
    for i in range(0, len(data), 64):
        block = data[i:i + 64]
        oled.write(block + [0] * (64 - len(block)))

if __name__ == "__main__":
    ipcon = IPConnection() # Create IP connection
    oled = BrickletOLED64x48(UID, ipcon) # Create device object

    ipcon.connect(HOST, PORT) # Connect to brickd
    # Don't use device before ipcon is connected

    # Clear display
    oled.clear_display()

    # Draw checkerboard pattern
    pixels = []

    for row in range(HEIGHT * 8):
        pixels.append([])

        for column in range(WIDTH):
            pixels[row].append((row // 8) % 2 == (column // 8) % 2)

    draw_matrix(oled, 0, 0, WIDTH, HEIGHT, pixels)

    input("Press key to exit\n") # Use raw_input() in Python 2
    ipcon.disconnect()

Load Image

Download (example_load_image.py)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
# -*- coding: utf-8 -*-

HOST = "localhost"
PORT = 4223
UID = "XYZ" # Change XYZ to the UID of your OLED 64x48 Bricklet
WIDTH = 64 # Columns (each 1 pixel wide)
HEIGHT = 6 # Rows (each 8 pixels high)

import sys
from PIL import Image
from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_oled_64x48 import BrickletOLED64x48

def draw_matrix(oled, start_column, start_row, column_count, row_count, pixels):
    pages = []

    # Convert pixel matrix into 8bit pages
    for row in range(row_count):
        pages.append([])

        for column in range(column_count):
            page = 0

            for bit in range(8):
                if pixels[(row * 8) + bit][column]:
                    page |= 1 << bit

            pages[row].append(page)

    # Merge page matrix into single page array
    data = []

    for row in range(row_count):
        for column in range(column_count):
            data.append(pages[row][column])

    # Set new window
    oled.new_window(start_column, start_column + column_count - 1,
                    start_row, start_row + row_count - 1)

    # Write page data in 64 byte blocks
    for i in range(0, len(data), 64):
        block = data[i:i + 64]
        oled.write(block + [0] * (64 - len(block)))

if __name__ == "__main__":
    ipcon = IPConnection() # Create IP connection
    oled = BrickletOLED64x48(UID, ipcon) # Create device object

    ipcon.connect(HOST, PORT) # Connect to brickd
    # Don't use device before ipcon is connected

    # Clear display
    oled.clear_display()

    # Convert image to black/white pixels
    image = Image.open(sys.argv[1])
    image_data = image.load()
    pixels = []

    for row in range(HEIGHT * 8):
        pixels.append([])

        for column in range(WIDTH):
            if column < image.size[0] and row < image.size[1]:
                pixel = image_data[column, row] > 0
            else:
                pixel = False

            pixels[row].append(pixel)

    draw_matrix(oled, 0, 0, WIDTH, HEIGHT, pixels)

    input("Press key to exit\n") # Use raw_input() in Python 2
    ipcon.disconnect()

Scribble

Download (example_scribble.py)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python
# -*- coding: utf-8 -*-

HOST = "localhost"
PORT = 4223
UID = "XYZ" # Change XYZ to the UID of your OLED 64x48 Bricklet
WIDTH = 64 # Columns (each 1 pixel wide)
HEIGHT = 6 # Rows (each 8 pixels high)

import math
import time
from PIL import Image, ImageDraw
from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_oled_64x48 import BrickletOLED64x48

def draw_image(oled, start_column, start_row, column_count, row_count, image):
    image_data = image.load()
    pages = []

    # Convert image pixels into 8bit pages
    for row in range(row_count):
        pages.append([])

        for column in range(column_count):
            page = 0

            for bit in range(8):
                if image_data[column, (row * 8) + bit]:
                    page |= 1 << bit

            pages[row].append(page)

    # Merge page matrix into single page array
    data = []

    for row in range(row_count):
        for column in range(column_count):
            data.append(pages[row][column])

    # Set new window
    oled.new_window(start_column, start_column + column_count - 1,
                    start_row, start_row + row_count - 1)

    # Write page data in 64 byte blocks
    for i in range(0, len(data), 64):
        block = data[i:i + 64]
        oled.write(block + [0] * (64 - len(block)))

if __name__ == "__main__":
    ipcon = IPConnection() # Create IP connection
    oled = BrickletOLED64x48(UID, ipcon) # Create device object

    ipcon.connect(HOST, PORT) # Connect to brickd
    # Don't use device before ipcon is connected

    # Clear display
    oled.clear_display()

    # Draw rotating line
    image = Image.new("1", (WIDTH, HEIGHT * 8), 0)
    draw = ImageDraw.Draw(image)
    origin_x = WIDTH // 2
    origin_y = HEIGHT * 8 // 2
    length = HEIGHT * 8 // 2 - 2
    angle = 0

    print("Press ctrl+c to exit")

    try:
        while True:
            radians = math.pi * angle / 180.0
            x = (int)(origin_x + length * math.cos(radians))
            y = (int)(origin_y + length * math.sin(radians))

            draw.rectangle((0, 0, WIDTH, HEIGHT * 8), 0, 0)
            draw.line((origin_x, origin_y, x, y), 1, 1)

            draw_image(oled, 0, 0, WIDTH, HEIGHT, image)
            time.sleep(0.025)

            angle += 1
    except KeyboardInterrupt:
        pass

    ipcon.disconnect()

API

Generally, every function of the Python bindings can throw an tinkerforge.ip_connection.Error exception that has a value and a description property. value can have different values:

  • Error.TIMEOUT = -1
  • Error.NOT_ADDED = -6 (unused since Python bindings version 2.0.0)
  • Error.ALREADY_CONNECTED = -7
  • Error.NOT_CONNECTED = -8
  • Error.INVALID_PARAMETER = -9
  • Error.NOT_SUPPORTED = -10
  • Error.UNKNOWN_ERROR_CODE = -11
  • Error.STREAM_OUT_OF_SYNC = -12
  • Error.INVALID_UID = -13
  • Error.NON_ASCII_CHAR_IN_SECRET = -14
  • Error.WRONG_DEVICE_TYPE = -15
  • Error.DEVICE_REPLACED = -16
  • Error.WRONG_RESPONSE_LENGTH = -17

All functions listed below are thread-safe.

Basic Functions

BrickletOLED64x48(uid, ipcon)
Parameters:
  • uid – Type: str
  • ipcon – Type: IPConnection
Returns:
  • oled_64x48 – Type: BrickletOLED64x48

Creates an object with the unique device ID uid:

oled_64x48 = BrickletOLED64x48("YOUR_DEVICE_UID", ipcon)

This object can then be used after the IP Connection is connected.

BrickletOLED64x48.write(data)
Parameters:
  • data – Type: [int, ...], Length: 64, Range: [0 to 255]
Returns:
  • None

Appends 64 byte of data to the window as set by new_window().

Each row has a height of 8 pixels which corresponds to one byte of data.

Example: if you call new_window() with column from 0 to 63 and row from 0 to 5 (the whole display) each call of write() (red arrow) will write one row.

Display pixel order

The LSB (D0) of each data byte is at the top and the MSB (D7) is at the bottom of the row.

The next call of write() will write the second row and so on. To fill the whole display you need to call write() 6 times.

BrickletOLED64x48.new_window(column_from, column_to, row_from, row_to)
Parameters:
  • column_from – Type: int, Range: [0 to 63]
  • column_to – Type: int, Range: [0 to 63]
  • row_from – Type: int, Range: [0 to 5]
  • row_to – Type: int, Range: [0 to 5]
Returns:
  • None

Sets the window in which you can write with write(). One row has a height of 8 pixels.

BrickletOLED64x48.clear_display()
Returns:
  • None

Clears the current content of the window as set by new_window().

BrickletOLED64x48.write_line(line, position, text)
Parameters:
  • line – Type: int, Range: [0 to 5]
  • position – Type: int, Range: [0 to 12]
  • text – Type: str, Length: up to 13
Returns:
  • None

Writes text to a specific line with a specific position. The text can have a maximum of 13 characters.

For example: (1, 4, "Hello") will write Hello in the middle of the second line of the display.

You can draw to the display with write() and then add text to it afterwards.

The display uses a special 5x7 pixel charset. You can view the characters of the charset in Brick Viewer.

The font conforms to code page 437.

Advanced Functions

BrickletOLED64x48.set_display_configuration(contrast, invert)
Parameters:
  • contrast – Type: int, Range: [0 to 255], Default: 143
  • invert – Type: bool, Default: False
Returns:
  • None

Sets the configuration of the display.

You can set a contrast value from 0 to 255 and you can invert the color (black/white) of the display.

BrickletOLED64x48.get_display_configuration()
Return Object:
  • contrast – Type: int, Range: [0 to 255], Default: 143
  • invert – Type: bool, Default: False

Returns the configuration as set by set_display_configuration().

BrickletOLED64x48.get_identity()
Return Object:
  • uid – Type: str, Length: up to 8
  • connected_uid – Type: str, Length: up to 8
  • position – Type: chr, Range: ["a" to "h", "z"]
  • hardware_version – Type: [int, ...], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]
  • firmware_version – Type: [int, ...], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]
  • device_identifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletOLED64x48.get_api_version()
Return Object:
  • api_version – Type: [int, ...], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletOLED64x48.get_response_expected(function_id)
Parameters:
  • function_id – Type: int, Range: See constants
Returns:
  • response_expected – Type: bool

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • BrickletOLED64x48.FUNCTION_WRITE = 1
  • BrickletOLED64x48.FUNCTION_NEW_WINDOW = 2
  • BrickletOLED64x48.FUNCTION_CLEAR_DISPLAY = 3
  • BrickletOLED64x48.FUNCTION_SET_DISPLAY_CONFIGURATION = 4
  • BrickletOLED64x48.FUNCTION_WRITE_LINE = 6
BrickletOLED64x48.set_response_expected(function_id, response_expected)
Parameters:
  • function_id – Type: int, Range: See constants
  • response_expected – Type: bool
Returns:
  • None

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • BrickletOLED64x48.FUNCTION_WRITE = 1
  • BrickletOLED64x48.FUNCTION_NEW_WINDOW = 2
  • BrickletOLED64x48.FUNCTION_CLEAR_DISPLAY = 3
  • BrickletOLED64x48.FUNCTION_SET_DISPLAY_CONFIGURATION = 4
  • BrickletOLED64x48.FUNCTION_WRITE_LINE = 6
BrickletOLED64x48.set_response_expected_all(response_expected)
Parameters:
  • response_expected – Type: bool
Returns:
  • None

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Constants

BrickletOLED64x48.DEVICE_IDENTIFIER

This constant is used to identify a OLED 64x48 Bricklet.

The get_identity() function and the IPConnection.CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

BrickletOLED64x48.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a OLED 64x48 Bricklet.