Java - Ambient Light Bricklet

This is the description of the Java API bindings for the Ambient Light Bricklet. General information and technical specifications for the Ambient Light Bricklet are summarized in its hardware description.

An installation guide for the Java API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAmbientLight;

public class ExampleSimple {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Ambient Light Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletAmbientLight al = new BrickletAmbientLight(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current illuminance
        int illuminance = al.getIlluminance(); // Can throw com.tinkerforge.TimeoutException
        System.out.println("Illuminance: " + illuminance/10.0 + " lx");

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Callback

Download (ExampleCallback.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAmbientLight;

public class ExampleCallback {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Ambient Light Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletAmbientLight al = new BrickletAmbientLight(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Add illuminance listener
        al.addIlluminanceListener(new BrickletAmbientLight.IlluminanceListener() {
            public void illuminance(int illuminance) {
                System.out.println("Illuminance: " + illuminance/10.0 + " lx");
            }
        });

        // Set period for illuminance callback to 1s (1000ms)
        // Note: The illuminance callback is only called every second
        //       if the illuminance has changed since the last call!
        al.setIlluminanceCallbackPeriod(1000);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Threshold

Download (ExampleThreshold.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAmbientLight;

public class ExampleThreshold {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Ambient Light Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletAmbientLight al = new BrickletAmbientLight(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get threshold callbacks with a debounce time of 10 seconds (10000ms)
        al.setDebouncePeriod(10000);

        // Add illuminance reached listener
        al.addIlluminanceReachedListener(new BrickletAmbientLight.IlluminanceReachedListener() {
            public void illuminanceReached(int illuminance) {
                System.out.println("Illuminance: " + illuminance/10.0 + " lx");
                System.out.println("Too bright, close the curtains!");
            }
        });

        // Configure threshold for illuminance "greater than 200 lx"
        al.setIlluminanceCallbackThreshold('>', 200*10, 0);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

API

Generally, every method of the Java bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletAmbientLight(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • ambientLight – Type: BrickletAmbientLight

Creates an object with the unique device ID uid:

BrickletAmbientLight ambientLight = new BrickletAmbientLight("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

int BrickletAmbientLight.getIlluminance()
Returns:
  • illuminance – Type: int, Unit: 1/10 lx, Range: [0 to 9000]

Returns the illuminance of the ambient light sensor.

If you want to get the illuminance periodically, it is recommended to use the IlluminanceListener listener and set the period with setIlluminanceCallbackPeriod().

Advanced Functions

int BrickletAmbientLight.getAnalogValue()
Returns:
  • value – Type: int, Range: [0 to 212 - 1]

Returns the value as read by a 12-bit analog-to-digital converter.

Note

The value returned by getIlluminance() is averaged over several samples to yield less noise, while getAnalogValue() gives back raw unfiltered analog values. The only reason to use getAnalogValue() is, if you need the full resolution of the analog-to-digital converter.

Also, the analog-to-digital converter covers three different ranges that are set dynamically depending on the light intensity. It is impossible to distinguish between these ranges with the analog value.

If you want the analog value periodically, it is recommended to use the AnalogValueListener listener and set the period with setAnalogValueCallbackPeriod().

BrickletAmbientLight.Identity BrickletAmbientLight.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'i', 'z']
  • hardwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). The Raspberry Pi HAT (Zero) Brick is always at position 'i' and the Bricklet connected to an Isolator Bricklet is always as position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Listener Configuration Functions

void BrickletAmbientLight.setIlluminanceCallbackPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the IlluminanceListener listener is triggered periodically. A value of 0 turns the listener off.

The IlluminanceListener listener is only triggered if the illuminance has changed since the last triggering.

long BrickletAmbientLight.getIlluminanceCallbackPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setIlluminanceCallbackPeriod().

void BrickletAmbientLight.setAnalogValueCallbackPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the AnalogValueListener listener is triggered periodically. A value of 0 turns the listener off.

The AnalogValueListener listener is only triggered if the analog value has changed since the last triggering.

long BrickletAmbientLight.getAnalogValueCallbackPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setAnalogValueCallbackPeriod().

void BrickletAmbientLight.setIlluminanceCallbackThreshold(char option, int min, int max)
Parameters:
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1/10 lx, Range: [0 to 216 - 1], Default: 0
  • max – Type: int, Unit: 1/10 lx, Range: [0 to 216 - 1], Default: 0

Sets the thresholds for the IlluminanceReachedListener listener.

The following options are possible:

Option Description
'x' Listener is turned off
'o' Listener is triggered when the illuminance is outside the min and max values
'i' Listener is triggered when the illuminance is inside the min and max values
'<' Listener is triggered when the illuminance is smaller than the min value (max is ignored)
'>' Listener is triggered when the illuminance is greater than the min value (max is ignored)

The following constants are available for this function:

For option:

  • BrickletAmbientLight.THRESHOLD_OPTION_OFF = 'x'
  • BrickletAmbientLight.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletAmbientLight.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletAmbientLight.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletAmbientLight.THRESHOLD_OPTION_GREATER = '>'
BrickletAmbientLight.IlluminanceCallbackThreshold BrickletAmbientLight.getIlluminanceCallbackThreshold()
Return Object:
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1/10 lx, Range: [0 to 216 - 1], Default: 0
  • max – Type: int, Unit: 1/10 lx, Range: [0 to 216 - 1], Default: 0

Returns the threshold as set by setIlluminanceCallbackThreshold().

The following constants are available for this function:

For option:

  • BrickletAmbientLight.THRESHOLD_OPTION_OFF = 'x'
  • BrickletAmbientLight.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletAmbientLight.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletAmbientLight.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletAmbientLight.THRESHOLD_OPTION_GREATER = '>'
void BrickletAmbientLight.setAnalogValueCallbackThreshold(char option, int min, int max)
Parameters:
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Range: [0 to 216 - 1], Default: 0
  • max – Type: int, Range: [0 to 216 - 1], Default: 0

Sets the thresholds for the AnalogValueReachedListener listener.

The following options are possible:

Option Description
'x' Listener is turned off
'o' Listener is triggered when the analog value is outside the min and max values
'i' Listener is triggered when the analog value is inside the min and max values
'<' Listener is triggered when the analog value is smaller than the min value (max is ignored)
'>' Listener is triggered when the analog value is greater than the min value (max is ignored)

The following constants are available for this function:

For option:

  • BrickletAmbientLight.THRESHOLD_OPTION_OFF = 'x'
  • BrickletAmbientLight.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletAmbientLight.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletAmbientLight.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletAmbientLight.THRESHOLD_OPTION_GREATER = '>'
BrickletAmbientLight.AnalogValueCallbackThreshold BrickletAmbientLight.getAnalogValueCallbackThreshold()
Return Object:
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Range: [0 to 216 - 1], Default: 0
  • max – Type: int, Range: [0 to 216 - 1], Default: 0

Returns the threshold as set by setAnalogValueCallbackThreshold().

The following constants are available for this function:

For option:

  • BrickletAmbientLight.THRESHOLD_OPTION_OFF = 'x'
  • BrickletAmbientLight.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletAmbientLight.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletAmbientLight.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletAmbientLight.THRESHOLD_OPTION_GREATER = '>'
void BrickletAmbientLight.setDebouncePeriod(long debounce)
Parameters:
  • debounce – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 100

Sets the period with which the threshold listeners

are triggered, if the thresholds

keep being reached.

long BrickletAmbientLight.getDebouncePeriod()
Returns:
  • debounce – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 100

Returns the debounce period as set by setDebouncePeriod().

Listeners

Listeners can be registered to receive time critical or recurring data from the device. The registration is done with add*Listener() functions of the device object.

The parameter is a listener class object, for example:

device.addExampleListener(new BrickletAmbientLight.ExampleListener() {
    public void property(int value) {
        System.out.println("Value: " + value);
    }
});

The available listener classes with inherent methods to be overwritten are described below. It is possible to add several listeners and to remove them with the corresponding remove*Listener() function.

Note

Using listeners for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

class BrickletAmbientLight.IlluminanceListener()

This listener can be added with the addIlluminanceListener() function. An added listener can be removed with the removeIlluminanceListener() function.

void illuminance(int illuminance)
Parameters:
  • illuminance – Type: int, Unit: 1/10 lx, Range: [0 to 9000]

This listener is triggered periodically with the period that is set by setIlluminanceCallbackPeriod(). The parameter is the illuminance of the ambient light sensor.

The IlluminanceListener listener is only triggered if the illuminance has changed since the last triggering.

class BrickletAmbientLight.AnalogValueListener()

This listener can be added with the addAnalogValueListener() function. An added listener can be removed with the removeAnalogValueListener() function.

void analogValue(int value)
Parameters:
  • value – Type: int, Range: [0 to 212 - 1]

This listener is triggered periodically with the period that is set by setAnalogValueCallbackPeriod(). The parameter is the analog value of the ambient light sensor.

The AnalogValueListener listener is only triggered if the analog value has changed since the last triggering.

class BrickletAmbientLight.IlluminanceReachedListener()

This listener can be added with the addIlluminanceReachedListener() function. An added listener can be removed with the removeIlluminanceReachedListener() function.

void illuminanceReached(int illuminance)
Parameters:
  • illuminance – Type: int, Unit: 1/10 lx, Range: [0 to 9000]

This listener is triggered when the threshold as set by setIlluminanceCallbackThreshold() is reached. The parameter is the illuminance of the ambient light sensor.

If the threshold keeps being reached, the listener is triggered periodically with the period as set by setDebouncePeriod().

class BrickletAmbientLight.AnalogValueReachedListener()

This listener can be added with the addAnalogValueReachedListener() function. An added listener can be removed with the removeAnalogValueReachedListener() function.

void analogValueReached(int value)
Parameters:
  • value – Type: int, Range: [0 to 212 - 1]

This listener is triggered when the threshold as set by setAnalogValueCallbackThreshold() is reached. The parameter is the analog value of the ambient light sensor.

If the threshold keeps being reached, the listener is triggered periodically with the period as set by setDebouncePeriod().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

short[] BrickletAmbientLight.getAPIVersion()
Return Object:
  • apiVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletAmbientLight.getResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For listener configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletAmbientLight.FUNCTION_SET_ILLUMINANCE_CALLBACK_PERIOD = 3
  • BrickletAmbientLight.FUNCTION_SET_ANALOG_VALUE_CALLBACK_PERIOD = 5
  • BrickletAmbientLight.FUNCTION_SET_ILLUMINANCE_CALLBACK_THRESHOLD = 7
  • BrickletAmbientLight.FUNCTION_SET_ANALOG_VALUE_CALLBACK_THRESHOLD = 9
  • BrickletAmbientLight.FUNCTION_SET_DEBOUNCE_PERIOD = 11
void BrickletAmbientLight.setResponseExpected(byte functionId, boolean responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and listener configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletAmbientLight.FUNCTION_SET_ILLUMINANCE_CALLBACK_PERIOD = 3
  • BrickletAmbientLight.FUNCTION_SET_ANALOG_VALUE_CALLBACK_PERIOD = 5
  • BrickletAmbientLight.FUNCTION_SET_ILLUMINANCE_CALLBACK_THRESHOLD = 7
  • BrickletAmbientLight.FUNCTION_SET_ANALOG_VALUE_CALLBACK_THRESHOLD = 9
  • BrickletAmbientLight.FUNCTION_SET_DEBOUNCE_PERIOD = 11
void BrickletAmbientLight.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and listener configuration functions of this device at once.

Constants

int BrickletAmbientLight.DEVICE_IDENTIFIER

This constant is used to identify a Ambient Light Bricklet.

The getIdentity() function and the IPConnection.EnumerateListener listener of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickletAmbientLight.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Ambient Light Bricklet.