Java - Piezo Buzzer Bricklet

This is the description of the Java API bindings for the Piezo Buzzer Bricklet. General information and technical specifications for the Piezo Buzzer Bricklet are summarized in its hardware description.

An installation guide for the Java API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Beep

Download (ExampleBeep.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletPiezoBuzzer;

public class ExampleBeep {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Piezo Buzzer Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletPiezoBuzzer pb = new BrickletPiezoBuzzer(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Make 2 second beep
        pb.beep(2000);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Morse Code

Download (ExampleMorseCode.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletPiezoBuzzer;

public class ExampleMorseCode {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Piezo Buzzer Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletPiezoBuzzer pb = new BrickletPiezoBuzzer(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Morse SOS
        pb.morseCode("... --- ...");

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

API

Generally, every method of the Java bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletPiezoBuzzer(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • piezoBuzzer – Type: BrickletPiezoBuzzer

Creates an object with the unique device ID uid:

BrickletPiezoBuzzer piezoBuzzer = new BrickletPiezoBuzzer("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

void BrickletPiezoBuzzer.beep(long duration)
Parameters:
  • duration – Type: long, Unit: 1 ms, Range: [0 to 232 - 1]

Beeps for the given duration.

void BrickletPiezoBuzzer.morseCode(String morse)
Parameters:
  • morse – Type: String, Length: up to 60

Sets morse code that will be played by the piezo buzzer. The morse code is given as a string consisting of "." (dot), "-" (minus) and " " (space) for dits, dahs and pauses. Every other character is ignored.

For example: If you set the string "...---...", the piezo buzzer will beep nine times with the durations "short short short long long long short short short".

Advanced Functions

BrickletPiezoBuzzer.Identity BrickletPiezoBuzzer.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'i', 'z']
  • hardwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). The Raspberry Pi HAT (Zero) Brick is always at position 'i' and the Bricklet connected to an Isolator Bricklet is always as position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Listeners

Listeners can be registered to receive time critical or recurring data from the device. The registration is done with add*Listener() functions of the device object.

The parameter is a listener class object, for example:

device.addExampleListener(new BrickletPiezoBuzzer.ExampleListener() {
    public void property(int value) {
        System.out.println("Value: " + value);
    }
});

The available listener classes with inherent methods to be overwritten are described below. It is possible to add several listeners and to remove them with the corresponding remove*Listener() function.

Note

Using listeners for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

class BrickletPiezoBuzzer.BeepFinishedListener()

This listener can be added with the addBeepFinishedListener() function. An added listener can be removed with the removeBeepFinishedListener() function.

void beepFinished()

This listener is triggered if a beep set by beep() is finished

class BrickletPiezoBuzzer.MorseCodeFinishedListener()

This listener can be added with the addMorseCodeFinishedListener() function. An added listener can be removed with the removeMorseCodeFinishedListener() function.

void morseCodeFinished()

This listener is triggered if the playback of the morse code set by morseCode() is finished.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

short[] BrickletPiezoBuzzer.getAPIVersion()
Return Object:
  • apiVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletPiezoBuzzer.getResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For listener configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletPiezoBuzzer.FUNCTION_BEEP = 1
  • BrickletPiezoBuzzer.FUNCTION_MORSE_CODE = 2
void BrickletPiezoBuzzer.setResponseExpected(byte functionId, boolean responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and listener configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletPiezoBuzzer.FUNCTION_BEEP = 1
  • BrickletPiezoBuzzer.FUNCTION_MORSE_CODE = 2
void BrickletPiezoBuzzer.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and listener configuration functions of this device at once.

Constants

int BrickletPiezoBuzzer.DEVICE_IDENTIFIER

This constant is used to identify a Piezo Buzzer Bricklet.

The getIdentity() function and the IPConnection.EnumerateListener listener of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickletPiezoBuzzer.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Piezo Buzzer Bricklet.