C/C++ for Microcontrollers - Energy Monitor Bricklet

This is the description of the C/C++ for Microcontrollers API bindings for the Energy Monitor Bricklet. General information and technical specifications for the Energy Monitor Bricklet are summarized in its hardware description.

An installation guide for the C/C++ for Microcontrollers API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (example_simple.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// This example is not self-contained.
// It requires usage of the example driver specific to your platform.
// See the HAL documentation.

#include "src/bindings/hal_common.h"
#include "src/bindings/bricklet_energy_monitor.h"

void check(int rc, const char *msg);
void example_setup(TF_HAL *hal);
void example_loop(TF_HAL *hal);

static TF_EnergyMonitor em;

void example_setup(TF_HAL *hal) {
    // Create device object
    check(tf_energy_monitor_create(&em, NULL, hal), "create device object");

    // Get current energy data
    int32_t voltage, current, energy, real_power, apparent_power, reactive_power;
    uint16_t power_factor, frequency;
    check(tf_energy_monitor_get_energy_data(&em, &voltage, &current, &energy, &real_power,
                                            &apparent_power, &reactive_power,
                                            &power_factor,
                                            &frequency), "get energy data");

    tf_hal_printf("Voltage: %d 1/%d V\n", voltage, 100);
    tf_hal_printf("Current: %d 1/%d A\n", current, 100);
    tf_hal_printf("Energy: %d 1/%d Wh\n", energy, 100);
    tf_hal_printf("Real Power: %d 1/%d h\n", real_power, 100);
    tf_hal_printf("Apparent Power: %d 1/%d VA\n", apparent_power, 100);
    tf_hal_printf("Reactive Power: %d 1/%d var\n", reactive_power, 100);
    tf_hal_printf("Power Factor: %d 1/%d\n", power_factor, 1000);
    tf_hal_printf("Frequency: %d 1/%d Hz\n", frequency, 100);
}

void example_loop(TF_HAL *hal) {
    // Poll for callbacks
    tf_hal_callback_tick(hal, 0);
}

Callback

Download (example_callback.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// This example is not self-contained.
// It requires usage of the example driver specific to your platform.
// See the HAL documentation.

#include "src/bindings/hal_common.h"
#include "src/bindings/bricklet_energy_monitor.h"

void check(int rc, const char *msg);
void example_setup(TF_HAL *hal);
void example_loop(TF_HAL *hal);

// Callback function for energy data callback
static void energy_data_handler(TF_EnergyMonitor *device, int32_t voltage,
                                int32_t current, int32_t energy, int32_t real_power,
                                int32_t apparent_power, int32_t reactive_power,
                                uint16_t power_factor, uint16_t frequency,
                                void *user_data) {
    (void)device; (void)user_data; // avoid unused parameter warning

    tf_hal_printf("Voltage: %d 1/%d V\n", voltage, 100);
    tf_hal_printf("Current: %d 1/%d A\n", current, 100);
    tf_hal_printf("Energy: %d 1/%d Wh\n", energy, 100);
    tf_hal_printf("Real Power: %d 1/%d h\n", real_power, 100);
    tf_hal_printf("Apparent Power: %d 1/%d VA\n", apparent_power, 100);
    tf_hal_printf("Reactive Power: %d 1/%d var\n", reactive_power, 100);
    tf_hal_printf("Power Factor: %d 1/%d\n", power_factor, 1000);
    tf_hal_printf("Frequency: %d 1/%d Hz\n", frequency, 100);
    tf_hal_printf("\n");
}

static TF_EnergyMonitor em;

void example_setup(TF_HAL *hal) {
    // Create device object
    check(tf_energy_monitor_create(&em, NULL, hal), "create device object");

    // Register energy data callback to function energy_data_handler
    tf_energy_monitor_register_energy_data_callback(&em,
                                                    energy_data_handler,
                                                    NULL);

    // Set period for energy data callback to 1s (1000ms)
    tf_energy_monitor_set_energy_data_callback_configuration(&em, 1000, false);
}

void example_loop(TF_HAL *hal) {
    // Poll for callbacks
    tf_hal_callback_tick(hal, 0);
}

API

Most functions of the C/C++ bindings for microcontrollers return an error code (e_code).

Possible error codes are:

  • TF_E_OK = 0
  • TF_E_TIMEOUT = -1
  • TF_E_INVALID_PARAMETER = -2
  • TF_E_NOT_SUPPORTED = -3
  • TF_E_UNKNOWN_ERROR_CODE = -4
  • TF_E_STREAM_OUT_OF_SYNC = -5
  • TF_E_INVALID_CHAR_IN_UID = -6
  • TF_E_UID_TOO_LONG = -7
  • TF_E_UID_OVERFLOW = -8
  • TF_E_TOO_MANY_DEVICES = -9
  • TF_E_DEVICE_NOT_FOUND = -10
  • TF_E_WRONG_DEVICE_TYPE = -11
  • TF_E_LOCKED = -12
  • TF_E_PORT_NOT_FOUND = -13

(as defined in errors.h) as well as the errors returned from the hardware abstraction layer (HAL) that is used.

Use :cpp:func`tf_hal_strerror` (defined in the HAL's header file) to get an error string for an error code.

Data returned from the device, when a getter is called, is handled via output parameters. These parameters are labeled with the ret_ prefix. The bindings will not write to an output parameter if NULL or nullptr is passed. This can be used to ignore outputs that you are not interested in.

None of the functions listed below are thread-safe. See the API bindings description for details.

Basic Functions

int tf_energy_monitor_create(TF_EnergyMonitor *energy_monitor, const char *uid_or_port_name, TF_HAL *hal)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • uid – Type: const char *
  • hal – Type: TF_HAL *
Returns:
  • e_code – Type: int

Creates the device object energy_monitor with the optional unique device ID or port name uid_or_port_name and adds it to the HAL hal:

TF_EnergyMonitor energy_monitor;
tf_energy_monitor_create(&energy_monitor, NULL, &hal);

Normally uid_or_port_name can stay NULL. For more details about this see section UID or Port Name.

int tf_energy_monitor_destroy(TF_EnergyMonitor *energy_monitor)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Returns:
  • e_code – Type: int

Removes the device object energy_monitor from its HAL and destroys it. The device object cannot be used anymore afterwards.

int tf_energy_monitor_get_energy_data(TF_EnergyMonitor *energy_monitor, int32_t *ret_voltage, int32_t *ret_current, int32_t *ret_energy, int32_t *ret_real_power, int32_t *ret_apparent_power, int32_t *ret_reactive_power, uint16_t *ret_power_factor, uint16_t *ret_frequency)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_voltage – Type: int32_t, Unit: 1/100 V, Range: [-231 to 231 - 1]
  • ret_current – Type: int32_t, Unit: 1/100 A, Range: [-231 to 231 - 1]
  • ret_energy – Type: int32_t, Unit: 1/100 Wh, Range: [-231 to 231 - 1]
  • ret_real_power – Type: int32_t, Unit: 1/100 W, Range: [-231 to 231 - 1]
  • ret_apparent_power – Type: int32_t, Unit: 1/100 VA, Range: [-231 to 231 - 1]
  • ret_reactive_power – Type: int32_t, Unit: 1/100 var, Range: [-231 to 231 - 1]
  • ret_power_factor – Type: uint16_t, Unit: 1/1000, Range: [0 to 216 - 1]
  • ret_frequency – Type: uint16_t, Unit: 1/100 Hz, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns all of the measurements that are done by the Energy Monitor Bricklet.

  • Voltage RMS
  • Current RMS
  • Energy (integrated over time)
  • Real Power
  • Apparent Power
  • Reactive Power
  • Power Factor
  • Frequency (AC Frequency of the mains voltage)

The frequency is recalculated every 6 seconds.

All other values are integrated over 10 zero-crossings of the voltage sine wave. With a standard AC mains voltage frequency of 50Hz this results in a 5 measurements per second (or an integration time of 200ms per measurement).

If no voltage transformer is connected, the Bricklet will use the current waveform to calculate the frequency and it will use an integration time of 10 zero-crossings of the current waveform.

int tf_energy_monitor_reset_energy(TF_EnergyMonitor *energy_monitor)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Returns:
  • e_code – Type: int

Sets the energy value (see tf_energy_monitor_get_energy_data()) back to 0Wh.

int tf_energy_monitor_get_waveform(TF_EnergyMonitor *energy_monitor, int16_t *ret_waveform, uint16_t *ret_waveform_length)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_waveform – Type: int16_t[1536], Range: [-215 to 215 - 1]
  • ret_waveform_length – Type: uint16_t
Returns:
  • e_code – Type: int

Returns a snapshot of the voltage and current waveform. The values in the returned array alternate between voltage and current. The data from one getter call contains 768 data points for voltage and current, which correspond to about 3 full sine waves.

The voltage is given with a resolution of 100mV and the current is given with a resolution of 10mA.

This data is meant to be used for a non-realtime graphical representation of the voltage and current waveforms.

int tf_energy_monitor_get_transformer_status(TF_EnergyMonitor *energy_monitor, bool *ret_voltage_transformer_connected, bool *ret_current_transformer_connected)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_voltage_transformer_connected – Type: bool
  • ret_current_transformer_connected – Type: bool
Returns:
  • e_code – Type: int

Returns true if a voltage/current transformer is connected to the Bricklet.

int tf_energy_monitor_set_transformer_calibration(TF_EnergyMonitor *energy_monitor, uint16_t voltage_ratio, uint16_t current_ratio, int16_t phase_shift)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • voltage_ratio – Type: uint16_t, Range: [0 to 216 - 1], Default: 1923
  • current_ratio – Type: uint16_t, Range: [0 to 216 - 1], Default: 3000
  • phase_shift – Type: int16_t, Range: [0], Default: 0
Returns:
  • e_code – Type: int

Sets the transformer ratio for the voltage and current transformer in 1/100 form.

Example: If your mains voltage is 230V, you use 9V voltage transformer and a 1V:30A current clamp your voltage ratio is 230/9 = 25.56 and your current ratio is 30/1 = 30.

In this case you have to set the values 2556 and 3000 for voltage ratio and current ratio.

The calibration is saved in non-volatile memory, you only have to set it once.

Set the phase shift to 0. It is for future use and currently not supported by the Bricklet.

int tf_energy_monitor_get_transformer_calibration(TF_EnergyMonitor *energy_monitor, uint16_t *ret_voltage_ratio, uint16_t *ret_current_ratio, int16_t *ret_phase_shift)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_voltage_ratio – Type: uint16_t, Range: [0 to 216 - 1], Default: 1923
  • ret_current_ratio – Type: uint16_t, Range: [0 to 216 - 1], Default: 3000
  • ret_phase_shift – Type: int16_t, Range: [0], Default: 0
Returns:
  • e_code – Type: int

Returns the transformer calibration as set by tf_energy_monitor_set_transformer_calibration().

int tf_energy_monitor_calibrate_offset(TF_EnergyMonitor *energy_monitor)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Returns:
  • e_code – Type: int

Calling this function will start an offset calibration. The offset calibration will integrate the voltage and current waveform over a longer time period to find the 0 transition point in the sine wave.

The Bricklet comes with a factory-calibrated offset value, you should not have to call this function.

If you want to re-calibrate the offset we recommend that you connect a load that has a smooth sinusoidal voltage and current waveform. Alternatively you can also short both inputs.

The calibration is saved in non-volatile memory, you only have to set it once.

Advanced Functions

int tf_energy_monitor_get_spitfp_error_count(TF_EnergyMonitor *energy_monitor, uint32_t *ret_error_count_ack_checksum, uint32_t *ret_error_count_message_checksum, uint32_t *ret_error_count_frame, uint32_t *ret_error_count_overflow)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_error_count_ack_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_message_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_frame – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_overflow – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

int tf_energy_monitor_set_status_led_config(TF_EnergyMonitor *energy_monitor, uint8_t config)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_OFF = 0
  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_ON = 1
  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_SHOW_STATUS = 3
int tf_energy_monitor_get_status_led_config(TF_EnergyMonitor *energy_monitor, uint8_t *ret_config)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_energy_monitor_set_status_led_config()

The following constants are available for this function:

For ret_config:

  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_OFF = 0
  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_ON = 1
  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_ENERGY_MONITOR_STATUS_LED_CONFIG_SHOW_STATUS = 3
int tf_energy_monitor_get_chip_temperature(TF_EnergyMonitor *energy_monitor, int16_t *ret_temperature)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_temperature – Type: int16_t, Unit: 1 °C, Range: [-215 to 215 - 1]
Returns:
  • e_code – Type: int

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

int tf_energy_monitor_reset(TF_EnergyMonitor *energy_monitor)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Returns:
  • e_code – Type: int

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

int tf_energy_monitor_get_identity(TF_EnergyMonitor *energy_monitor, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_uid – Type: char[8]
  • ret_connected_uid – Type: char[8]
  • ret_position – Type: char, Range: ['a' to 'h', 'z']
  • ret_hardware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_firmware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_device_identifier – Type: uint16_t, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

int tf_energy_monitor_set_energy_data_callback_configuration(TF_EnergyMonitor *energy_monitor, uint32_t period, bool value_has_to_change)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • value_has_to_change – Type: bool, Default: false
Returns:
  • e_code – Type: int

The period is the period with which the Energy Data callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

int tf_energy_monitor_get_energy_data_callback_configuration(TF_EnergyMonitor *energy_monitor, uint32_t *ret_period, bool *ret_value_has_to_change)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • ret_value_has_to_change – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the callback configuration as set by tf_energy_monitor_set_energy_data_callback_configuration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the corresponding tf_energy_monitor_register_*_callback function. The user_data passed to the registration function as well as the device that triggered the callback are passed to the registered callback handler.

Only one handler can be registered to a callback at the same time. To deregister a callback, call the tf_energy_monitor_register_*_callback function with NULL as handler.

Note

Using callbacks for recurring events is preferred compared to using getters. Polling for a callback requires writing one byte only. See here Optimizing Performance.

Warning

Calling bindings function from inside a callback handler is not allowed. See here Thread safety.

int tf_energy_monitor_register_energy_data_callback(TF_EnergyMonitor *energy_monitor, TF_EnergyMonitor_EnergyDataHandler handler, void *user_data)
void handler(TF_EnergyMonitor *energy_monitor, int32_t voltage, int32_t current, int32_t energy, int32_t real_power, int32_t apparent_power, int32_t reactive_power, uint16_t power_factor, uint16_t frequency, void *user_data)
Callback Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • voltage – Type: int32_t, Unit: 1/100 V, Range: [-231 to 231 - 1]
  • current – Type: int32_t, Unit: 1/100 A, Range: [-231 to 231 - 1]
  • energy – Type: int32_t, Unit: 1/100 Wh, Range: [-231 to 231 - 1]
  • real_power – Type: int32_t, Unit: 1/100 W, Range: [-231 to 231 - 1]
  • apparent_power – Type: int32_t, Unit: 1/100 VA, Range: [-231 to 231 - 1]
  • reactive_power – Type: int32_t, Unit: 1/100 var, Range: [-231 to 231 - 1]
  • power_factor – Type: uint16_t, Unit: 1/1000, Range: [0 to 216 - 1]
  • frequency – Type: uint16_t, Unit: 1/100 Hz, Range: [0 to 216 - 1]
  • user_data – Type: void *

This callback is triggered periodically according to the configuration set by tf_energy_monitor_set_energy_data_callback_configuration().

The parameters are the same as tf_energy_monitor_get_energy_data().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object.

int tf_energy_monitor_get_response_expected(TF_EnergyMonitor *energy_monitor, uint8_t function_id, bool *ret_response_expected)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • function_id – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_response_expected – Type: bool
Returns:
  • e_code – Type: int

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by tf_energy_monitor_set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • TF_ENERGY_MONITOR_FUNCTION_RESET_ENERGY = 2
  • TF_ENERGY_MONITOR_FUNCTION_SET_TRANSFORMER_CALIBRATION = 5
  • TF_ENERGY_MONITOR_FUNCTION_CALIBRATE_OFFSET = 7
  • TF_ENERGY_MONITOR_FUNCTION_SET_ENERGY_DATA_CALLBACK_CONFIGURATION = 8
  • TF_ENERGY_MONITOR_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • TF_ENERGY_MONITOR_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • TF_ENERGY_MONITOR_FUNCTION_RESET = 243
  • TF_ENERGY_MONITOR_FUNCTION_WRITE_UID = 248
int tf_energy_monitor_set_response_expected(TF_EnergyMonitor *energy_monitor, uint8_t function_id, bool response_expected)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • function_id – Type: uint8_t, Range: See constants
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • TF_ENERGY_MONITOR_FUNCTION_RESET_ENERGY = 2
  • TF_ENERGY_MONITOR_FUNCTION_SET_TRANSFORMER_CALIBRATION = 5
  • TF_ENERGY_MONITOR_FUNCTION_CALIBRATE_OFFSET = 7
  • TF_ENERGY_MONITOR_FUNCTION_SET_ENERGY_DATA_CALLBACK_CONFIGURATION = 8
  • TF_ENERGY_MONITOR_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • TF_ENERGY_MONITOR_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • TF_ENERGY_MONITOR_FUNCTION_RESET = 243
  • TF_ENERGY_MONITOR_FUNCTION_WRITE_UID = 248
int tf_energy_monitor_set_response_expected_all(TF_EnergyMonitor *energy_monitor, bool response_expected)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

int tf_energy_monitor_set_bootloader_mode(TF_EnergyMonitor *energy_monitor, uint8_t mode, uint8_t *ret_status)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • mode – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_status – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_BOOTLOADER = 0
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_FIRMWARE = 1
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For ret_status:

  • TF_ENERGY_MONITOR_BOOTLOADER_STATUS_OK = 0
  • TF_ENERGY_MONITOR_BOOTLOADER_STATUS_INVALID_MODE = 1
  • TF_ENERGY_MONITOR_BOOTLOADER_STATUS_NO_CHANGE = 2
  • TF_ENERGY_MONITOR_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • TF_ENERGY_MONITOR_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • TF_ENERGY_MONITOR_BOOTLOADER_STATUS_CRC_MISMATCH = 5
int tf_energy_monitor_get_bootloader_mode(TF_EnergyMonitor *energy_monitor, uint8_t *ret_mode)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Returns the current bootloader mode, see tf_energy_monitor_set_bootloader_mode().

The following constants are available for this function:

For ret_mode:

  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_BOOTLOADER = 0
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_FIRMWARE = 1
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • TF_ENERGY_MONITOR_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
int tf_energy_monitor_set_write_firmware_pointer(TF_EnergyMonitor *energy_monitor, uint32_t pointer)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • pointer – Type: uint32_t, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Sets the firmware pointer for tf_energy_monitor_write_firmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int tf_energy_monitor_write_firmware(TF_EnergyMonitor *energy_monitor, const uint8_t data[64], uint8_t *ret_status)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • data – Type: const uint8_t[64], Range: [0 to 255]
Output Parameters:
  • ret_status – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Writes 64 Bytes of firmware at the position as written by tf_energy_monitor_set_write_firmware_pointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int tf_energy_monitor_write_uid(TF_EnergyMonitor *energy_monitor, uint32_t uid)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
  • uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

int tf_energy_monitor_read_uid(TF_EnergyMonitor *energy_monitor, uint32_t *ret_uid)
Parameters:
  • energy_monitor – Type: TF_EnergyMonitor *
Output Parameters:
  • ret_uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

TF_ENERGY_MONITOR_DEVICE_IDENTIFIER

This constant is used to identify a Energy Monitor Bricklet.

The functions tf_energy_monitor_get_identity() and tf_hal_get_device_info() have a device_identifier output parameter to specify the Brick's or Bricklet's type.

TF_ENERGY_MONITOR_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Energy Monitor Bricklet.