C/C++ for Microcontrollers - Silent Stepper Bricklet 2.0

This is the description of the C/C++ for Microcontrollers API bindings for the Silent Stepper Bricklet 2.0. General information and technical specifications for the Silent Stepper Bricklet 2.0 are summarized in its hardware description.

An installation guide for the C/C++ for Microcontrollers API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Configuration

Download (example_configuration.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// This example is not self-contained.
// It requires usage of the example driver specific to your platform.
// See the HAL documentation.

#include "src/bindings/hal_common.h"
#include "src/bindings/bricklet_silent_stepper_v2.h"

void check(int rc, const char *msg);
void example_setup(TF_HAL *hal);
void example_loop(TF_HAL *hal);

static TF_SilentStepperV2 ss;

void example_setup(TF_HAL *hal) {
    // Create device object
    check(tf_silent_stepper_v2_create(&ss, NULL, hal), "create device object");

    check(tf_silent_stepper_v2_set_motor_current(&ss,
                                                 800), "call set_motor_current"); // 800 mA
    check(tf_silent_stepper_v2_set_step_configuration(&ss,
                                                      TF_SILENT_STEPPER_V2_STEP_RESOLUTION_8,
                                                      true), "call set_step_configuration"); // 1/8 steps (interpolated)
    check(tf_silent_stepper_v2_set_max_velocity(&ss,
                                                2000), "call set_max_velocity"); // Velocity 2000 steps/s

    // Slow acceleration (500 steps/s^2),
    // Fast deacceleration (5000 steps/s^2)
    check(tf_silent_stepper_v2_set_speed_ramping(&ss, 500,
                                                 5000), "call set_speed_ramping");

    check(tf_silent_stepper_v2_set_enabled(&ss,
                                           true), "call set_enabled"); // Enable motor power
    check(tf_silent_stepper_v2_set_steps(&ss,
                                         60000), "call set_steps"); // Drive 60000 steps forward
}

void example_loop(TF_HAL *hal) {
    // Poll for callbacks
    tf_hal_callback_tick(hal, 0);
}

Callback

Download (example_callback.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// This example is not self-contained.
// It requires usage of the example driver specific to your platform.
// See the HAL documentation.

#include "src/bindings/hal_common.h"
#include "src/bindings/bricklet_silent_stepper_v2.h"

// FIXME: This example is incomplete, missing tf_hal_random(min, max) function

void check(int rc, const char *msg);
void example_setup(TF_HAL *hal);
void example_loop(TF_HAL *hal);

// Use position reached callback to program random movement
static void position_reached_handler(TF_SilentStepperV2 *device, int32_t position,
                                     void *user_data) {
    (void)device; (void)user_data; // avoid unused parameter warning

    tf_hal_printf("Position: %I32d\n", position);
}

static TF_SilentStepperV2 ss;

void example_setup(TF_HAL *hal) {
    // Create device object
    check(tf_silent_stepper_v2_create(&ss, NULL, hal), "create device object");

    // Register position reached callback to function position_reached_handler
    tf_silent_stepper_v2_register_position_reached_callback(&ss,
                                                            position_reached_handler,
                                                            NULL);

    check(tf_silent_stepper_v2_set_step_configuration(&ss,
                                                      TF_SILENT_STEPPER_V2_STEP_RESOLUTION_8,
                                                      true), "call set_step_configuration"); // 1/8 steps (interpolated)
    check(tf_silent_stepper_v2_set_enabled(&ss,
                                           true), "call set_enabled"); // Enable motor power
    check(tf_silent_stepper_v2_set_steps(&ss,
                                         1), "call set_steps"); // Drive one step forward to get things going
}

void example_loop(TF_HAL *hal) {
    // Poll for callbacks
    tf_hal_callback_tick(hal, 0);
}

API

Most functions of the C/C++ bindings for microcontrollers return an error code (e_code).

Possible error codes are:

  • TF_E_OK = 0
  • TF_E_TIMEOUT = -1
  • TF_E_INVALID_PARAMETER = -2
  • TF_E_NOT_SUPPORTED = -3
  • TF_E_UNKNOWN_ERROR_CODE = -4
  • TF_E_STREAM_OUT_OF_SYNC = -5
  • TF_E_INVALID_CHAR_IN_UID = -6
  • TF_E_UID_TOO_LONG = -7
  • TF_E_UID_OVERFLOW = -8
  • TF_E_TOO_MANY_DEVICES = -9
  • TF_E_DEVICE_NOT_FOUND = -10
  • TF_E_WRONG_DEVICE_TYPE = -11
  • TF_E_LOCKED = -12
  • TF_E_PORT_NOT_FOUND = -13

(as defined in errors.h) as well as the errors returned from the hardware abstraction layer (HAL) that is used.

Use :cpp:func`tf_hal_strerror` (defined in the HAL's header file) to get an error string for an error code.

Data returned from the device, when a getter is called, is handled via output parameters. These parameters are labeled with the ret_ prefix. The bindings will not write to an output parameter if NULL or nullptr is passed. This can be used to ignore outputs that you are not interested in.

None of the functions listed below are thread-safe. See the API bindings description for details.

Basic Functions

int tf_silent_stepper_v2_create(TF_SilentStepperV2 *silent_stepper_v2, const char *uid_or_port_name, TF_HAL *hal)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • uid – Type: const char *
  • hal – Type: TF_HAL *
Returns:
  • e_code – Type: int

Creates the device object silent_stepper_v2 with the optional unique device ID or port name uid_or_port_name and adds it to the HAL hal:

TF_SilentStepperV2 silent_stepper_v2;
tf_silent_stepper_v2_create(&silent_stepper_v2, NULL, &hal);

Normally uid_or_port_name can stay NULL. For more details about this see section UID or Port Name.

int tf_silent_stepper_v2_destroy(TF_SilentStepperV2 *silent_stepper_v2)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Returns:
  • e_code – Type: int

Removes the device object silent_stepper_v2 from its HAL and destroys it. The device object cannot be used anymore afterwards.

int tf_silent_stepper_v2_set_max_velocity(TF_SilentStepperV2 *silent_stepper_v2, uint16_t velocity)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • velocity – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Sets the maximum velocity of the stepper motor. This function does not start the motor, it merely sets the maximum velocity the stepper motor is accelerated to. To get the motor running use either tf_silent_stepper_v2_set_target_position(), tf_silent_stepper_v2_set_steps(), tf_silent_stepper_v2_drive_forward() or tf_silent_stepper_v2_drive_backward().

int tf_silent_stepper_v2_get_max_velocity(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_velocity)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_velocity – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the velocity as set by tf_silent_stepper_v2_set_max_velocity().

int tf_silent_stepper_v2_get_current_velocity(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_velocity)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_velocity – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the current velocity of the stepper motor.

int tf_silent_stepper_v2_set_speed_ramping(TF_SilentStepperV2 *silent_stepper_v2, uint16_t acceleration, uint16_t deacceleration)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • acceleration – Type: uint16_t, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000
  • deacceleration – Type: uint16_t, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000
Returns:
  • e_code – Type: int

Sets the acceleration and deacceleration of the stepper motor. An acceleration of 1000 means, that every second the velocity is increased by 1000 steps/s.

For example: If the current velocity is 0 and you want to accelerate to a velocity of 8000 steps/s in 10 seconds, you should set an acceleration of 800 steps/s².

An acceleration/deacceleration of 0 means instantaneous acceleration/deacceleration (not recommended)

int tf_silent_stepper_v2_get_speed_ramping(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_acceleration, uint16_t *ret_deacceleration)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_acceleration – Type: uint16_t, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000
  • ret_deacceleration – Type: uint16_t, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 1000
Returns:
  • e_code – Type: int

Returns the acceleration and deacceleration as set by tf_silent_stepper_v2_set_speed_ramping().

int tf_silent_stepper_v2_full_brake(TF_SilentStepperV2 *silent_stepper_v2)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Returns:
  • e_code – Type: int

Executes an active full brake.

Warning

This function is for emergency purposes, where an immediate brake is necessary. Depending on the current velocity and the strength of the motor, a full brake can be quite violent.

Call tf_silent_stepper_v2_stop() if you just want to stop the motor.

int tf_silent_stepper_v2_set_steps(TF_SilentStepperV2 *silent_stepper_v2, int32_t steps)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • steps – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Sets the number of steps the stepper motor should run. Positive values will drive the motor forward and negative values backward. The velocity, acceleration and deacceleration as set by tf_silent_stepper_v2_set_max_velocity() and tf_silent_stepper_v2_set_speed_ramping() will be used.

int tf_silent_stepper_v2_get_steps(TF_SilentStepperV2 *silent_stepper_v2, int32_t *ret_steps)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_steps – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Returns the last steps as set by tf_silent_stepper_v2_set_steps().

int tf_silent_stepper_v2_get_remaining_steps(TF_SilentStepperV2 *silent_stepper_v2, int32_t *ret_steps)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_steps – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Returns the remaining steps of the last call of tf_silent_stepper_v2_set_steps(). For example, if tf_silent_stepper_v2_set_steps() is called with 2000 and tf_silent_stepper_v2_get_remaining_steps() is called after the motor has run for 500 steps, it will return 1500.

int tf_silent_stepper_v2_drive_forward(TF_SilentStepperV2 *silent_stepper_v2)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Returns:
  • e_code – Type: int

Drives the stepper motor forward until tf_silent_stepper_v2_drive_backward() or tf_silent_stepper_v2_stop() is called. The velocity, acceleration and deacceleration as set by tf_silent_stepper_v2_set_max_velocity() and tf_silent_stepper_v2_set_speed_ramping() will be used.

int tf_silent_stepper_v2_drive_backward(TF_SilentStepperV2 *silent_stepper_v2)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Returns:
  • e_code – Type: int

Drives the stepper motor backward until tf_silent_stepper_v2_drive_forward() or tf_silent_stepper_v2_stop() is triggered. The velocity, acceleration and deacceleration as set by tf_silent_stepper_v2_set_max_velocity() and tf_silent_stepper_v2_set_speed_ramping() will be used.

int tf_silent_stepper_v2_stop(TF_SilentStepperV2 *silent_stepper_v2)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Returns:
  • e_code – Type: int

Stops the stepper motor with the deacceleration as set by tf_silent_stepper_v2_set_speed_ramping().

int tf_silent_stepper_v2_set_motor_current(TF_SilentStepperV2 *silent_stepper_v2, uint16_t current)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • current – Type: uint16_t, Unit: 1 mA, Range: [360 to 1640], Default: 800
Returns:
  • e_code – Type: int

Sets the current with which the motor will be driven.

Warning

Do not set this value above the specifications of your stepper motor. Otherwise it may damage your motor.

int tf_silent_stepper_v2_get_motor_current(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_current)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_current – Type: uint16_t, Unit: 1 mA, Range: [360 to 1640], Default: 800
Returns:
  • e_code – Type: int

Returns the current as set by tf_silent_stepper_v2_set_motor_current().

int tf_silent_stepper_v2_set_enabled(TF_SilentStepperV2 *silent_stepper_v2, bool enabled)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Enables/Disables the driver chip. The driver parameters can be configured (maximum velocity, acceleration, etc) before it is enabled.

Warning

Disabling the driver chip while the motor is still turning can damage the driver chip. The motor should be stopped calling tf_silent_stepper_v2_stop() function before disabling the motor power. The tf_silent_stepper_v2_stop() function will not wait until the motor is actually stopped. You have to explicitly wait for the appropriate time after calling the tf_silent_stepper_v2_stop() function before calling the tf_silent_stepper_v2_set_enabled() with false function.

int tf_silent_stepper_v2_get_enabled(TF_SilentStepperV2 *silent_stepper_v2, bool *ret_enabled)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns true if the stepper driver is enabled, false otherwise.

int tf_silent_stepper_v2_set_basic_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint16_t standstill_current, uint16_t motor_run_current, uint16_t standstill_delay_time, uint16_t power_down_time, uint16_t stealth_threshold, uint16_t coolstep_threshold, uint16_t classic_threshold, bool high_velocity_chopper_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • standstill_current – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1], Default: 200
  • motor_run_current – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1], Default: 800
  • standstill_delay_time – Type: uint16_t, Unit: 1 ms, Range: [0 to 307], Default: 0
  • power_down_time – Type: uint16_t, Unit: 1 ms, Range: [0 to 5222], Default: 1000
  • stealth_threshold – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • coolstep_threshold – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • classic_threshold – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 1000
  • high_velocity_chopper_mode – Type: bool, Default: false
Returns:
  • e_code – Type: int

Sets the basic configuration parameters for the different modes (Stealth, Coolstep, Classic).

  • Standstill Current: This value can be used to lower the current during stand still. This might be reasonable to reduce the heating of the motor and the Bricklet 2.0. When the motor is in standstill the configured motor phase current will be driven until the configured Power Down Time is elapsed. After that the phase current will be reduced to the standstill current. The elapsed time for this reduction can be configured with the Standstill Delay Time. The maximum allowed value is the configured maximum motor current (see tf_silent_stepper_v2_set_motor_current()).
  • Motor Run Current: The value sets the motor current when the motor is running. Use a value of at least one half of the global maximum motor current for a good microstep performance. The maximum allowed value is the current motor current. The API maps the entered value to 1/32 ... 32/32 of the maximum motor current. This value should be used to change the motor current during motor movement, whereas the global maximum motor current should not be changed while the motor is moving (see tf_silent_stepper_v2_set_motor_current()).
  • Standstill Delay Time: Controls the duration for motor power down after a motion as soon as standstill is detected and the Power Down Time is expired. A high Standstill Delay Time results in a smooth transition that avoids motor jerk during power down.
  • Power Down Time: Sets the delay time after a stand still.
  • Stealth Threshold: Sets the upper threshold for Stealth mode. If the velocity of the motor goes above this value, Stealth mode is turned off. Otherwise it is turned on. In Stealth mode the torque declines with high speed.
  • Coolstep Threshold: Sets the lower threshold for Coolstep mode. The Coolstep Threshold needs to be above the Stealth Threshold.
  • Classic Threshold: Sets the lower threshold for classic mode. In classic mode the stepper becomes more noisy, but the torque is maximized.
  • High Velocity Chopper Mode: If High Velocity Chopper Mode is enabled, the stepper control is optimized to run the stepper motors at high velocities.

If you want to use all three thresholds make sure that Stealth Threshold < Coolstep Threshold < Classic Threshold.

int tf_silent_stepper_v2_get_basic_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_standstill_current, uint16_t *ret_motor_run_current, uint16_t *ret_standstill_delay_time, uint16_t *ret_power_down_time, uint16_t *ret_stealth_threshold, uint16_t *ret_coolstep_threshold, uint16_t *ret_classic_threshold, bool *ret_high_velocity_chopper_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_standstill_current – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1], Default: 200
  • ret_motor_run_current – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1], Default: 800
  • ret_standstill_delay_time – Type: uint16_t, Unit: 1 ms, Range: [0 to 307], Default: 0
  • ret_power_down_time – Type: uint16_t, Unit: 1 ms, Range: [0 to 5222], Default: 1000
  • ret_stealth_threshold – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • ret_coolstep_threshold – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 500
  • ret_classic_threshold – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1], Default: 1000
  • ret_high_velocity_chopper_mode – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_silent_stepper_v2_set_basic_configuration().

int tf_silent_stepper_v2_set_gpio_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t channel, uint16_t debounce, uint16_t stop_deceleration)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • channel – Type: uint8_t, Range: [0 to 1]
  • debounce – Type: uint16_t, Unit: 1 ms, Range: [0 to 216 - 1], Default: 200
  • stop_deceleration – Type: uint16_t, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 216 - 1
Returns:
  • e_code – Type: int

Sets the GPIO configuration for the given channel. You can configure a debounce and the deceleration that is used if the action is configured as normal stop. See tf_silent_stepper_v2_set_gpio_action().

int tf_silent_stepper_v2_get_gpio_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t channel, uint16_t *ret_debounce, uint16_t *ret_stop_deceleration)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • channel – Type: uint8_t, Range: [0 to 1]
Output Parameters:
  • ret_debounce – Type: uint16_t, Unit: 1 ms, Range: [0 to 216 - 1], Default: 200
  • ret_stop_deceleration – Type: uint16_t, Unit: 1 1/s², Range: [0 to 216 - 1], Default: 216 - 1
Returns:
  • e_code – Type: int

Returns the GPIO configuration for a channel as set by tf_silent_stepper_v2_set_gpio_configuration().

int tf_silent_stepper_v2_set_gpio_action(TF_SilentStepperV2 *silent_stepper_v2, uint8_t channel, uint32_t action)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • channel – Type: uint8_t, Range: [0 to 1]
  • action – Type: uint32_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Sets the GPIO action for the given channel.

The action can be a normal stop, a full brake or a callback. Each for a rising edge or falling edge. The actions are a bitmask they can be used at the same time. You can for example trigger a full brake and a callback at the same time or for rising and falling edge.

The deceleration speed for the normal stop can be configured with tf_silent_stepper_v2_set_gpio_configuration().

The following constants are available for this function:

For action:

  • TF_SILENT_STEPPER_V2_GPIO_ACTION_NONE = 0
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_NORMAL_STOP_RISING_EDGE = 1
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_NORMAL_STOP_FALLING_EDGE = 2
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_FULL_BRAKE_RISING_EDGE = 4
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_FULL_BRAKE_FALLING_EDGE = 8
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_CALLBACK_RISING_EDGE = 16
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_CALLBACK_FALLING_EDGE = 32
int tf_silent_stepper_v2_get_gpio_action(TF_SilentStepperV2 *silent_stepper_v2, uint8_t channel, uint32_t *ret_action)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • channel – Type: uint8_t, Range: [0 to 1]
Output Parameters:
  • ret_action – Type: uint32_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Returns the GPIO action for a channel as set by tf_silent_stepper_v2_set_gpio_action().

The following constants are available for this function:

For ret_action:

  • TF_SILENT_STEPPER_V2_GPIO_ACTION_NONE = 0
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_NORMAL_STOP_RISING_EDGE = 1
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_NORMAL_STOP_FALLING_EDGE = 2
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_FULL_BRAKE_RISING_EDGE = 4
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_FULL_BRAKE_FALLING_EDGE = 8
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_CALLBACK_RISING_EDGE = 16
  • TF_SILENT_STEPPER_V2_GPIO_ACTION_CALLBACK_FALLING_EDGE = 32
int tf_silent_stepper_v2_get_gpio_state(TF_SilentStepperV2 *silent_stepper_v2, bool ret_gpio_state[2])
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_gpio_state – Type: bool[2]
Returns:
  • e_code – Type: int

Returns the GPIO state for both channels. True if the state is high and false if the state is low.

Advanced Functions

int tf_silent_stepper_v2_set_current_position(TF_SilentStepperV2 *silent_stepper_v2, int32_t position)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • position – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Sets the current steps of the internal step counter. This can be used to set the current position to 0 when some kind of starting position is reached (e.g. when a CNC machine reaches a corner).

int tf_silent_stepper_v2_get_current_position(TF_SilentStepperV2 *silent_stepper_v2, int32_t *ret_position)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_position – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Returns the current position of the stepper motor in steps. On startup the position is 0. The steps are counted with all possible driving functions (tf_silent_stepper_v2_set_target_position(), tf_silent_stepper_v2_set_steps(), tf_silent_stepper_v2_drive_forward() or tf_silent_stepper_v2_drive_backward()). It also is possible to reset the steps to 0 or set them to any other desired value with tf_silent_stepper_v2_set_current_position().

int tf_silent_stepper_v2_set_target_position(TF_SilentStepperV2 *silent_stepper_v2, int32_t position)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • position – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Sets the target position of the stepper motor in steps. For example, if the current position of the motor is 500 and tf_silent_stepper_v2_set_target_position() is called with 1000, the stepper motor will drive 500 steps forward. It will use the velocity, acceleration and deacceleration as set by tf_silent_stepper_v2_set_max_velocity() and tf_silent_stepper_v2_set_speed_ramping().

A call of tf_silent_stepper_v2_set_target_position() with the parameter x is equivalent to a call of tf_silent_stepper_v2_set_steps() with the parameter (x - tf_silent_stepper_v2_get_current_position()).

int tf_silent_stepper_v2_get_target_position(TF_SilentStepperV2 *silent_stepper_v2, int32_t *ret_position)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_position – Type: int32_t, Range: [-231 to 231 - 1]
Returns:
  • e_code – Type: int

Returns the last target position as set by tf_silent_stepper_v2_set_target_position().

int tf_silent_stepper_v2_set_step_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t step_resolution, bool interpolation)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • step_resolution – Type: uint8_t, Range: See constants, Default: 0
  • interpolation – Type: bool, Default: true
Returns:
  • e_code – Type: int

Sets the step resolution from full-step up to 1/256-step.

If interpolation is turned on, the Silent Stepper Bricklet 2.0 will always interpolate your step inputs as 1/256-step. If you use full-step mode with interpolation, each step will generate 256 1/256 steps.

For maximum torque use full-step without interpolation. For maximum resolution use 1/256-step. Turn interpolation on to make the Stepper driving less noisy.

If you often change the speed with high acceleration you should turn the interpolation off.

The following constants are available for this function:

For step_resolution:

  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_1 = 8
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_2 = 7
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_4 = 6
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_8 = 5
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_16 = 4
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_32 = 3
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_64 = 2
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_128 = 1
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_256 = 0
int tf_silent_stepper_v2_get_step_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_step_resolution, bool *ret_interpolation)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_step_resolution – Type: uint8_t, Range: See constants
  • ret_interpolation – Type: bool, Default: true
Returns:
  • e_code – Type: int

Returns the step mode as set by tf_silent_stepper_v2_set_step_configuration().

The following constants are available for this function:

For ret_step_resolution:

  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_1 = 8
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_2 = 7
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_4 = 6
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_8 = 5
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_16 = 4
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_32 = 3
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_64 = 2
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_128 = 1
  • TF_SILENT_STEPPER_V2_STEP_RESOLUTION_256 = 0
int tf_silent_stepper_v2_get_input_voltage(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_voltage)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the external input voltage. The external input voltage is given via the black power input connector on the Silent Stepper Bricklet 2.0.

If there is an external input voltage and a stack input voltage, the motor will be driven by the external input voltage. If there is only a stack voltage present, the motor will be driven by this voltage.

Warning

This means, if you have a high stack voltage and a low external voltage, the motor will be driven with the low external voltage. If you then remove the external connection, it will immediately be driven by the high stack voltage

int tf_silent_stepper_v2_set_spreadcycle_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t slow_decay_duration, bool enable_random_slow_decay, uint8_t fast_decay_duration, uint8_t hysteresis_start_value, int8_t hysteresis_end_value, int8_t sine_wave_offset, uint8_t chopper_mode, uint8_t comparator_blank_time, bool fast_decay_without_comparator)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • slow_decay_duration – Type: uint8_t, Range: [0 to 15], Default: 4
  • enable_random_slow_decay – Type: bool, Default: false
  • fast_decay_duration – Type: uint8_t, Range: [0 to 15], Default: 0
  • hysteresis_start_value – Type: uint8_t, Range: [0 to 7], Default: 0
  • hysteresis_end_value – Type: int8_t, Range: [-3 to 12], Default: 0
  • sine_wave_offset – Type: int8_t, Range: [-3 to 12], Default: 0
  • chopper_mode – Type: uint8_t, Range: See constants, Default: 0
  • comparator_blank_time – Type: uint8_t, Range: [0 to 3], Default: 1
  • fast_decay_without_comparator – Type: bool, Default: false
Returns:
  • e_code – Type: int

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets the Spreadcycle configuration parameters. Spreadcycle is a chopper algorithm which actively controls the motor current flow. More information can be found in the TMC2130 datasheet on page 47 (7 spreadCycle and Classic Chopper).

  • Slow Decay Duration: Controls duration of off time setting of slow decay phase. 0 = driver disabled, all bridges off. Use 1 only with Comparator Blank time >= 2.

  • Enable Random Slow Decay: Set to false to fix chopper off time as set by Slow Decay Duration. If you set it to true, Decay Duration is randomly modulated.

  • Fast Decay Duration: Sets the fast decay duration. This parameters is only used if the Chopper Mode is set to Fast Decay.

  • Hysteresis Start Value: Sets the hysteresis start value. This parameter is only used if the Chopper Mode is set to Spread Cycle.

  • Hysteresis End Value: Sets the hysteresis end value. This parameter is only used if the Chopper Mode is set to Spread Cycle.

  • Sine Wave Offset: Sets the sine wave offset. This parameters is only used if the Chopper Mode is set to Fast Decay. 1/512 of the value becomes added to the absolute value of the sine wave.

  • Chopper Mode: 0 = Spread Cycle, 1 = Fast Decay.

  • Comparator Blank Time: Sets the blank time of the comparator. Available values are

    • 0 = 16 clocks,
    • 1 = 24 clocks,
    • 2 = 36 clocks and
    • 3 = 54 clocks.

    A value of 1 or 2 is recommended for most applications.

  • Fast Decay Without Comparator: If set to true the current comparator usage for termination of the fast decay cycle is disabled.

The following constants are available for this function:

For chopper_mode:

  • TF_SILENT_STEPPER_V2_CHOPPER_MODE_SPREAD_CYCLE = 0
  • TF_SILENT_STEPPER_V2_CHOPPER_MODE_FAST_DECAY = 1
int tf_silent_stepper_v2_get_spreadcycle_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_slow_decay_duration, bool *ret_enable_random_slow_decay, uint8_t *ret_fast_decay_duration, uint8_t *ret_hysteresis_start_value, int8_t *ret_hysteresis_end_value, int8_t *ret_sine_wave_offset, uint8_t *ret_chopper_mode, uint8_t *ret_comparator_blank_time, bool *ret_fast_decay_without_comparator)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_slow_decay_duration – Type: uint8_t, Range: [0 to 15], Default: 4
  • ret_enable_random_slow_decay – Type: bool, Default: false
  • ret_fast_decay_duration – Type: uint8_t, Range: [0 to 15], Default: 0
  • ret_hysteresis_start_value – Type: uint8_t, Range: [0 to 7], Default: 0
  • ret_hysteresis_end_value – Type: int8_t, Range: [-3 to 12], Default: 0
  • ret_sine_wave_offset – Type: int8_t, Range: [-3 to 12], Default: 0
  • ret_chopper_mode – Type: uint8_t, Range: See constants, Default: 0
  • ret_comparator_blank_time – Type: uint8_t, Range: [0 to 3], Default: 1
  • ret_fast_decay_without_comparator – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_silent_stepper_v2_set_basic_configuration().

The following constants are available for this function:

For ret_chopper_mode:

  • TF_SILENT_STEPPER_V2_CHOPPER_MODE_SPREAD_CYCLE = 0
  • TF_SILENT_STEPPER_V2_CHOPPER_MODE_FAST_DECAY = 1
int tf_silent_stepper_v2_set_stealth_configuration(TF_SilentStepperV2 *silent_stepper_v2, bool enable_stealth, uint8_t amplitude, uint8_t gradient, bool enable_autoscale, bool force_symmetric, uint8_t freewheel_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • enable_stealth – Type: bool, Default: true
  • amplitude – Type: uint8_t, Range: [0 to 255], Default: 128
  • gradient – Type: uint8_t, Range: [0 to 255], Default: 4
  • enable_autoscale – Type: bool, Default: true
  • force_symmetric – Type: bool, Default: false
  • freewheel_mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets the configuration relevant for Stealth mode.

  • Enable Stealth: If set to true the stealth mode is enabled, if set to false the stealth mode is disabled, even if the speed is below the threshold set in tf_silent_stepper_v2_set_basic_configuration().
  • Amplitude: If autoscale is disabled, the PWM amplitude is scaled by this value. If autoscale is enabled, this value defines the maximum PWM amplitude change per half wave.
  • Gradient: If autoscale is disabled, the PWM gradient is scaled by this value. If autoscale is enabled, this value defines the maximum PWM gradient. With autoscale a value above 64 is recommended, otherwise the regulation might not be able to measure the current.
  • Enable Autoscale: If set to true, automatic current control is used. Otherwise the user defined amplitude and gradient are used.
  • Force Symmetric: If true, A symmetric PWM cycle is enforced. Otherwise the PWM value may change within each PWM cycle.
  • Freewheel Mode: The freewheel mode defines the behavior in stand still if the Standstill Current (see tf_silent_stepper_v2_set_basic_configuration()) is set to 0.

The following constants are available for this function:

For freewheel_mode:

  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_NORMAL = 0
  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_FREEWHEELING = 1
  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_COIL_SHORT_LS = 2
  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_COIL_SHORT_HS = 3
int tf_silent_stepper_v2_get_stealth_configuration(TF_SilentStepperV2 *silent_stepper_v2, bool *ret_enable_stealth, uint8_t *ret_amplitude, uint8_t *ret_gradient, bool *ret_enable_autoscale, bool *ret_force_symmetric, uint8_t *ret_freewheel_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_enable_stealth – Type: bool, Default: true
  • ret_amplitude – Type: uint8_t, Range: [0 to 255], Default: 128
  • ret_gradient – Type: uint8_t, Range: [0 to 255], Default: 4
  • ret_enable_autoscale – Type: bool, Default: true
  • ret_force_symmetric – Type: bool, Default: false
  • ret_freewheel_mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_silent_stepper_v2_set_stealth_configuration().

The following constants are available for this function:

For ret_freewheel_mode:

  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_NORMAL = 0
  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_FREEWHEELING = 1
  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_COIL_SHORT_LS = 2
  • TF_SILENT_STEPPER_V2_FREEWHEEL_MODE_COIL_SHORT_HS = 3
int tf_silent_stepper_v2_set_coolstep_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t minimum_stallguard_value, uint8_t maximum_stallguard_value, uint8_t current_up_step_width, uint8_t current_down_step_width, uint8_t minimum_current, int8_t stallguard_threshold_value, uint8_t stallguard_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • minimum_stallguard_value – Type: uint8_t, Range: [0 to 15], Default: 2
  • maximum_stallguard_value – Type: uint8_t, Range: [0 to 15], Default: 10
  • current_up_step_width – Type: uint8_t, Range: See constants, Default: 0
  • current_down_step_width – Type: uint8_t, Range: See constants, Default: 0
  • minimum_current – Type: uint8_t, Range: See constants, Default: 0
  • stallguard_threshold_value – Type: int8_t, Range: [-64 to 63], Default: 0
  • stallguard_mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets the configuration relevant for Coolstep.

  • Minimum Stallguard Value: If the Stallguard result falls below this value*32, the motor current is increased to reduce motor load angle. A value of 0 turns Coolstep off.
  • Maximum Stallguard Value: If the Stallguard result goes above (Min Stallguard Value + Max Stallguard Value + 1) * 32, the motor current is decreased to save energy.
  • Current Up Step Width: Sets the up step increment per Stallguard value. The value range is 0-3, corresponding to the increments 1, 2, 4 and 8.
  • Current Down Step Width: Sets the down step decrement per Stallguard value. The value range is 0-3, corresponding to the decrements 1, 2, 8 and 16.
  • Minimum Current: Sets the minimum current for Coolstep current control. You can choose between half and quarter of the run current.
  • Stallguard Threshold Value: Sets the level for stall output (see tf_silent_stepper_v2_get_driver_status()). A lower value gives a higher sensitivity. You have to find a suitable value for your motor by trial and error, 0 works for most motors.
  • Stallguard Mode: Set to 0 for standard resolution or 1 for filtered mode. In filtered mode the Stallguard signal will be updated every four full-steps.

The following constants are available for this function:

For current_up_step_width:

  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_1 = 0
  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_2 = 1
  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_4 = 2
  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_8 = 3

For current_down_step_width:

  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_1 = 0
  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_2 = 1
  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_8 = 2
  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_32 = 3

For minimum_current:

  • TF_SILENT_STEPPER_V2_MINIMUM_CURRENT_HALF = 0
  • TF_SILENT_STEPPER_V2_MINIMUM_CURRENT_QUARTER = 1

For stallguard_mode:

  • TF_SILENT_STEPPER_V2_STALLGUARD_MODE_STANDARD = 0
  • TF_SILENT_STEPPER_V2_STALLGUARD_MODE_FILTERED = 1
int tf_silent_stepper_v2_get_coolstep_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_minimum_stallguard_value, uint8_t *ret_maximum_stallguard_value, uint8_t *ret_current_up_step_width, uint8_t *ret_current_down_step_width, uint8_t *ret_minimum_current, int8_t *ret_stallguard_threshold_value, uint8_t *ret_stallguard_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_minimum_stallguard_value – Type: uint8_t, Range: [0 to 15], Default: 2
  • ret_maximum_stallguard_value – Type: uint8_t, Range: [0 to 15], Default: 10
  • ret_current_up_step_width – Type: uint8_t, Range: See constants, Default: 0
  • ret_current_down_step_width – Type: uint8_t, Range: See constants, Default: 0
  • ret_minimum_current – Type: uint8_t, Range: See constants, Default: 0
  • ret_stallguard_threshold_value – Type: int8_t, Range: [-64 to 63], Default: 0
  • ret_stallguard_mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_silent_stepper_v2_set_coolstep_configuration().

The following constants are available for this function:

For ret_current_up_step_width:

  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_1 = 0
  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_2 = 1
  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_4 = 2
  • TF_SILENT_STEPPER_V2_CURRENT_UP_STEP_INCREMENT_8 = 3

For ret_current_down_step_width:

  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_1 = 0
  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_2 = 1
  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_8 = 2
  • TF_SILENT_STEPPER_V2_CURRENT_DOWN_STEP_DECREMENT_32 = 3

For ret_minimum_current:

  • TF_SILENT_STEPPER_V2_MINIMUM_CURRENT_HALF = 0
  • TF_SILENT_STEPPER_V2_MINIMUM_CURRENT_QUARTER = 1

For ret_stallguard_mode:

  • TF_SILENT_STEPPER_V2_STALLGUARD_MODE_STANDARD = 0
  • TF_SILENT_STEPPER_V2_STALLGUARD_MODE_FILTERED = 1
int tf_silent_stepper_v2_set_misc_configuration(TF_SilentStepperV2 *silent_stepper_v2, bool disable_short_to_ground_protection, uint8_t synchronize_phase_frequency)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • disable_short_to_ground_protection – Type: bool, Default: false
  • synchronize_phase_frequency – Type: uint8_t, Range: [0 to 15], Default: 0
Returns:
  • e_code – Type: int

Note: If you don't know what any of this means you can very likely keep all of the values as default!

Sets miscellaneous configuration parameters.

  • Disable Short To Ground Protection: Set to false to enable short to ground protection, otherwise it is disabled.
  • Synchronize Phase Frequency: With this parameter you can synchronize the chopper for both phases of a two phase motor to avoid the occurrence of a beat. The value range is 0-15. If set to 0, the synchronization is turned off. Otherwise the synchronization is done through the formula f_sync = f_clk/(value*64). In Classic Mode the synchronization is automatically switched off. f_clk is 12.8MHz.
int tf_silent_stepper_v2_get_misc_configuration(TF_SilentStepperV2 *silent_stepper_v2, bool *ret_disable_short_to_ground_protection, uint8_t *ret_synchronize_phase_frequency)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_disable_short_to_ground_protection – Type: bool, Default: false
  • ret_synchronize_phase_frequency – Type: uint8_t, Range: [0 to 15], Default: 0
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_silent_stepper_v2_set_misc_configuration().

int tf_silent_stepper_v2_set_error_led_config(TF_SilentStepperV2 *silent_stepper_v2, uint8_t config)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Configures the error LED to be either turned off, turned on, blink in heartbeat mode or show an error.

If the LED is configured to show errors it has three different states:

  • Off: No error present.
  • 250ms interval blink: Overtemperature warning.
  • 1s interval blink: Input voltage too small.
  • full red: motor disabled because of short to ground in phase a or b or because of overtemperature.

The following constants are available for this function:

For config:

  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_OFF = 0
  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_ON = 1
  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_SHOW_ERROR = 3
int tf_silent_stepper_v2_get_error_led_config(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_config)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the LED configuration as set by tf_silent_stepper_v2_set_error_led_config()

The following constants are available for this function:

For ret_config:

  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_OFF = 0
  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_ON = 1
  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_SILENT_STEPPER_V2_ERROR_LED_CONFIG_SHOW_ERROR = 3
int tf_silent_stepper_v2_get_driver_status(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_open_load, uint8_t *ret_short_to_ground, uint8_t *ret_over_temperature, bool *ret_motor_stalled, uint8_t *ret_actual_motor_current, bool *ret_full_step_active, uint8_t *ret_stallguard_result, uint8_t *ret_stealth_voltage_amplitude)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_open_load – Type: uint8_t, Range: See constants
  • ret_short_to_ground – Type: uint8_t, Range: See constants
  • ret_over_temperature – Type: uint8_t, Range: See constants
  • ret_motor_stalled – Type: bool
  • ret_actual_motor_current – Type: uint8_t, Range: [0 to 31]
  • ret_full_step_active – Type: bool
  • ret_stallguard_result – Type: uint8_t, Range: [0 to 255]
  • ret_stealth_voltage_amplitude – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Returns the current driver status.

  • Open Load: Indicates if an open load is present on phase A, B or both. This could mean that there is a problem with the wiring of the motor. False detection can occur in fast motion as well as during stand still.
  • Short To Ground: Indicates if a short to ground is present on phase A, B or both. If this is detected the driver automatically becomes disabled and stays disabled until it is enabled again manually.
  • Over Temperature: The over temperature indicator switches to "Warning" if the driver IC warms up. The warning flag is expected during long duration stepper uses. If the temperature limit is reached the indicator switches to "Limit". In this case the driver becomes disabled until it cools down again.
  • Motor Stalled: Is true if a motor stall was detected.
  • Actual Motor Current: Indicates the actual current control scaling as used in Coolstep mode. It represents a multiplier of 1/32 to 32/32 of the Motor Run Current as set by tf_silent_stepper_v2_set_basic_configuration(). Example: If a Motor Run Current of 1000mA was set and the returned value is 15, the Actual Motor Current is 16/32*1000mA = 500mA.
  • Stallguard Result: Indicates the load of the motor. A lower value signals a higher load. Per trial and error you can find out which value corresponds to a suitable torque for the velocity used in your application. After that you can use this threshold value to find out if a motor stall becomes probable and react on it (e.g. decrease velocity). During stand still this value can not be used for stall detection, it shows the chopper on-time for motor coil A.
  • Stealth Voltage Amplitude: Shows the actual PWM scaling. In Stealth mode it can be used to detect motor load and stall if autoscale is enabled (see tf_silent_stepper_v2_set_stealth_configuration()).

The following constants are available for this function:

For ret_open_load:

  • TF_SILENT_STEPPER_V2_OPEN_LOAD_NONE = 0
  • TF_SILENT_STEPPER_V2_OPEN_LOAD_PHASE_A = 1
  • TF_SILENT_STEPPER_V2_OPEN_LOAD_PHASE_B = 2
  • TF_SILENT_STEPPER_V2_OPEN_LOAD_PHASE_AB = 3

For ret_short_to_ground:

  • TF_SILENT_STEPPER_V2_SHORT_TO_GROUND_NONE = 0
  • TF_SILENT_STEPPER_V2_SHORT_TO_GROUND_PHASE_A = 1
  • TF_SILENT_STEPPER_V2_SHORT_TO_GROUND_PHASE_B = 2
  • TF_SILENT_STEPPER_V2_SHORT_TO_GROUND_PHASE_AB = 3

For ret_over_temperature:

  • TF_SILENT_STEPPER_V2_OVER_TEMPERATURE_NONE = 0
  • TF_SILENT_STEPPER_V2_OVER_TEMPERATURE_WARNING = 1
  • TF_SILENT_STEPPER_V2_OVER_TEMPERATURE_LIMIT = 2
int tf_silent_stepper_v2_set_time_base(TF_SilentStepperV2 *silent_stepper_v2, uint32_t time_base)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • time_base – Type: uint32_t, Unit: 1 s, Range: [0 to 232 - 1], Default: 1
Returns:
  • e_code – Type: int

Sets the time base of the velocity and the acceleration of the Silent Stepper Bricklet 2.0.

For example, if you want to make one step every 1.5 seconds, you can set the time base to 15 and the velocity to 10. Now the velocity is 10steps/15s = 1steps/1.5s.

int tf_silent_stepper_v2_get_time_base(TF_SilentStepperV2 *silent_stepper_v2, uint32_t *ret_time_base)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_time_base – Type: uint32_t, Unit: 1 s, Range: [0 to 232 - 1], Default: 1
Returns:
  • e_code – Type: int

Returns the time base as set by tf_silent_stepper_v2_set_time_base().

int tf_silent_stepper_v2_get_all_data(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_current_velocity, int32_t *ret_current_position, int32_t *ret_remaining_steps, uint16_t *ret_input_voltage, uint16_t *ret_current_consumption)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_current_velocity – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1]
  • ret_current_position – Type: int32_t, Range: [-231 to 231 - 1]
  • ret_remaining_steps – Type: int32_t, Range: [-231 to 231 - 1]
  • ret_input_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
  • ret_current_consumption – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the following parameters: The current velocity, the current position, the remaining steps, the stack voltage, the external voltage and the current consumption of the stepper motor.

The current consumption is calculated by multiplying the Actual Motor Current value (see tf_silent_stepper_v2_set_basic_configuration()) with the Motor Run Current (see tf_silent_stepper_v2_get_driver_status()). This is an internal calculation of the driver, not an independent external measurement.

The current consumption calculation was broken up to firmware 2.0.1, it is fixed since firmware 2.0.2.

There is also a callback for this function, see All Data callback.

int tf_silent_stepper_v2_get_spitfp_error_count(TF_SilentStepperV2 *silent_stepper_v2, uint32_t *ret_error_count_ack_checksum, uint32_t *ret_error_count_message_checksum, uint32_t *ret_error_count_frame, uint32_t *ret_error_count_overflow)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_error_count_ack_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_message_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_frame – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_overflow – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

int tf_silent_stepper_v2_set_status_led_config(TF_SilentStepperV2 *silent_stepper_v2, uint8_t config)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_OFF = 0
  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_ON = 1
  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_SHOW_STATUS = 3
int tf_silent_stepper_v2_get_status_led_config(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_config)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_silent_stepper_v2_set_status_led_config()

The following constants are available for this function:

For ret_config:

  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_OFF = 0
  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_ON = 1
  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_SILENT_STEPPER_V2_STATUS_LED_CONFIG_SHOW_STATUS = 3
int tf_silent_stepper_v2_get_chip_temperature(TF_SilentStepperV2 *silent_stepper_v2, int16_t *ret_temperature)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_temperature – Type: int16_t, Unit: 1 °C, Range: [-215 to 215 - 1]
Returns:
  • e_code – Type: int

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

int tf_silent_stepper_v2_reset(TF_SilentStepperV2 *silent_stepper_v2)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Returns:
  • e_code – Type: int

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

int tf_silent_stepper_v2_get_identity(TF_SilentStepperV2 *silent_stepper_v2, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_uid – Type: char[8]
  • ret_connected_uid – Type: char[8]
  • ret_position – Type: char, Range: ['a' to 'h', 'z']
  • ret_hardware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_firmware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_device_identifier – Type: uint16_t, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

int tf_silent_stepper_v2_set_minimum_voltage(TF_SilentStepperV2 *silent_stepper_v2, uint16_t voltage)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1], Default: 8000
Returns:
  • e_code – Type: int

Sets the minimum voltage, below which the Under Voltage callback is triggered. The minimum possible value that works with the Silent Stepper Bricklet 2.0 is 8V. You can use this function to detect the discharge of a battery that is used to drive the stepper motor. If you have a fixed power supply, you likely do not need this functionality.

int tf_silent_stepper_v2_get_minimum_voltage(TF_SilentStepperV2 *silent_stepper_v2, uint16_t *ret_voltage)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1], Default: 8000
Returns:
  • e_code – Type: int

Returns the minimum voltage as set by tf_silent_stepper_v2_set_minimum_voltage().

int tf_silent_stepper_v2_set_all_callback_configuration(TF_SilentStepperV2 *silent_stepper_v2, uint32_t period)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
Returns:
  • e_code – Type: int

Sets the period with which the All Data callback is triggered periodically. A value of 0 turns the callback off.

int tf_silent_stepper_v2_get_all_data_callback_configuraton(TF_SilentStepperV2 *silent_stepper_v2, uint32_t *ret_period)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
Returns:
  • e_code – Type: int

Returns the period as set by tf_silent_stepper_v2_set_all_callback_configuration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the corresponding tf_silent_stepper_v2_register_*_callback function. The user_data passed to the registration function as well as the device that triggered the callback are passed to the registered callback handler.

Only one handler can be registered to a callback at the same time. To deregister a callback, call the tf_silent_stepper_v2_register_*_callback function with NULL as handler.

Note

Using callbacks for recurring events is preferred compared to using getters. Polling for a callback requires writing one byte only. See here Optimizing Performance.

Warning

Calling bindings function from inside a callback handler is not allowed. See here Thread safety.

int tf_silent_stepper_v2_register_under_voltage_callback(TF_SilentStepperV2 *silent_stepper_v2, TF_SilentStepperV2_UnderVoltageHandler handler, void *user_data)
void handler(TF_SilentStepperV2 *silent_stepper_v2, uint16_t voltage, void *user_data)
Callback Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
  • user_data – Type: void *

This callback is triggered when the input voltage drops below the value set by tf_silent_stepper_v2_set_minimum_voltage(). The parameter is the current voltage.

int tf_silent_stepper_v2_register_position_reached_callback(TF_SilentStepperV2 *silent_stepper_v2, TF_SilentStepperV2_PositionReachedHandler handler, void *user_data)
void handler(TF_SilentStepperV2 *silent_stepper_v2, int32_t position, void *user_data)
Callback Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • position – Type: int32_t, Range: [-231 to 231 - 1]
  • user_data – Type: void *

This callback is triggered when a position set by tf_silent_stepper_v2_set_steps() or tf_silent_stepper_v2_set_target_position() is reached.

Note

Since we can't get any feedback from the stepper motor, this only works if the acceleration (see tf_silent_stepper_v2_set_speed_ramping()) is set smaller or equal to the maximum acceleration of the motor. Otherwise the motor will lag behind the control value and the callback will be triggered too early.

int tf_silent_stepper_v2_register_all_data_callback(TF_SilentStepperV2 *silent_stepper_v2, TF_SilentStepperV2_AllDataHandler handler, void *user_data)
void handler(TF_SilentStepperV2 *silent_stepper_v2, uint16_t current_velocity, int32_t current_position, int32_t remaining_steps, uint16_t input_voltage, uint16_t current_consumption, void *user_data)
Callback Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • current_velocity – Type: uint16_t, Unit: 1 1/s, Range: [0 to 216 - 1]
  • current_position – Type: int32_t, Range: [-231 to 231 - 1]
  • remaining_steps – Type: int32_t, Range: [-231 to 231 - 1]
  • input_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
  • current_consumption – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1]
  • user_data – Type: void *

This callback is triggered periodically with the period that is set by tf_silent_stepper_v2_set_all_callback_configuration(). The parameters are: the current velocity, the current position, the remaining steps, the stack voltage, the external voltage and the current consumption of the stepper motor.

int tf_silent_stepper_v2_register_new_state_callback(TF_SilentStepperV2 *silent_stepper_v2, TF_SilentStepperV2_NewStateHandler handler, void *user_data)
void handler(TF_SilentStepperV2 *silent_stepper_v2, uint8_t state_new, uint8_t state_previous, void *user_data)
Callback Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • state_new – Type: uint8_t, Range: See constants
  • state_previous – Type: uint8_t, Range: See constants
  • user_data – Type: void *

This callback is triggered whenever the Silent Stepper Bricklet 2.0 enters a new state. It returns the new state as well as the previous state.

The following constants are available for this function:

For state_new:

  • TF_SILENT_STEPPER_V2_STATE_STOP = 1
  • TF_SILENT_STEPPER_V2_STATE_ACCELERATION = 2
  • TF_SILENT_STEPPER_V2_STATE_RUN = 3
  • TF_SILENT_STEPPER_V2_STATE_DEACCELERATION = 4
  • TF_SILENT_STEPPER_V2_STATE_DIRECTION_CHANGE_TO_FORWARD = 5
  • TF_SILENT_STEPPER_V2_STATE_DIRECTION_CHANGE_TO_BACKWARD = 6

For state_previous:

  • TF_SILENT_STEPPER_V2_STATE_STOP = 1
  • TF_SILENT_STEPPER_V2_STATE_ACCELERATION = 2
  • TF_SILENT_STEPPER_V2_STATE_RUN = 3
  • TF_SILENT_STEPPER_V2_STATE_DEACCELERATION = 4
  • TF_SILENT_STEPPER_V2_STATE_DIRECTION_CHANGE_TO_FORWARD = 5
  • TF_SILENT_STEPPER_V2_STATE_DIRECTION_CHANGE_TO_BACKWARD = 6
int tf_silent_stepper_v2_register_gpio_state_callback(TF_SilentStepperV2 *silent_stepper_v2, TF_SilentStepperV2_GPIOStateHandler handler, void *user_data)
void handler(TF_SilentStepperV2 *silent_stepper_v2, bool gpio_state[2], void *user_data)
Callback Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • gpio_state – Type: bool[2]
  • user_data – Type: void *

This callback is triggered by GPIO changes if it is activated through tf_silent_stepper_v2_set_gpio_action().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object.

int tf_silent_stepper_v2_get_response_expected(TF_SilentStepperV2 *silent_stepper_v2, uint8_t function_id, bool *ret_response_expected)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • function_id – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_response_expected – Type: bool
Returns:
  • e_code – Type: int

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by tf_silent_stepper_v2_set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MAX_VELOCITY = 1
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_SPEED_RAMPING = 4
  • TF_SILENT_STEPPER_V2_FUNCTION_FULL_BRAKE = 6
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_CURRENT_POSITION = 7
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_TARGET_POSITION = 9
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STEPS = 11
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STEP_CONFIGURATION = 14
  • TF_SILENT_STEPPER_V2_FUNCTION_DRIVE_FORWARD = 16
  • TF_SILENT_STEPPER_V2_FUNCTION_DRIVE_BACKWARD = 17
  • TF_SILENT_STEPPER_V2_FUNCTION_STOP = 18
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MOTOR_CURRENT = 22
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_ENABLED = 24
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_BASIC_CONFIGURATION = 26
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_SPREADCYCLE_CONFIGURATION = 28
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STEALTH_CONFIGURATION = 30
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_COOLSTEP_CONFIGURATION = 32
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MISC_CONFIGURATION = 34
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_ERROR_LED_CONFIG = 36
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MINIMUM_VOLTAGE = 39
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_TIME_BASE = 43
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_ALL_CALLBACK_CONFIGURATION = 46
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_GPIO_CONFIGURATION = 48
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_GPIO_ACTION = 50
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • TF_SILENT_STEPPER_V2_FUNCTION_RESET = 243
  • TF_SILENT_STEPPER_V2_FUNCTION_WRITE_UID = 248
int tf_silent_stepper_v2_set_response_expected(TF_SilentStepperV2 *silent_stepper_v2, uint8_t function_id, bool response_expected)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • function_id – Type: uint8_t, Range: See constants
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MAX_VELOCITY = 1
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_SPEED_RAMPING = 4
  • TF_SILENT_STEPPER_V2_FUNCTION_FULL_BRAKE = 6
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_CURRENT_POSITION = 7
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_TARGET_POSITION = 9
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STEPS = 11
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STEP_CONFIGURATION = 14
  • TF_SILENT_STEPPER_V2_FUNCTION_DRIVE_FORWARD = 16
  • TF_SILENT_STEPPER_V2_FUNCTION_DRIVE_BACKWARD = 17
  • TF_SILENT_STEPPER_V2_FUNCTION_STOP = 18
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MOTOR_CURRENT = 22
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_ENABLED = 24
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_BASIC_CONFIGURATION = 26
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_SPREADCYCLE_CONFIGURATION = 28
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STEALTH_CONFIGURATION = 30
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_COOLSTEP_CONFIGURATION = 32
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MISC_CONFIGURATION = 34
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_ERROR_LED_CONFIG = 36
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_MINIMUM_VOLTAGE = 39
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_TIME_BASE = 43
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_ALL_CALLBACK_CONFIGURATION = 46
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_GPIO_CONFIGURATION = 48
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_GPIO_ACTION = 50
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • TF_SILENT_STEPPER_V2_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • TF_SILENT_STEPPER_V2_FUNCTION_RESET = 243
  • TF_SILENT_STEPPER_V2_FUNCTION_WRITE_UID = 248
int tf_silent_stepper_v2_set_response_expected_all(TF_SilentStepperV2 *silent_stepper_v2, bool response_expected)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

int tf_silent_stepper_v2_set_bootloader_mode(TF_SilentStepperV2 *silent_stepper_v2, uint8_t mode, uint8_t *ret_status)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • mode – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_status – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_BOOTLOADER = 0
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_FIRMWARE = 1
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For ret_status:

  • TF_SILENT_STEPPER_V2_BOOTLOADER_STATUS_OK = 0
  • TF_SILENT_STEPPER_V2_BOOTLOADER_STATUS_INVALID_MODE = 1
  • TF_SILENT_STEPPER_V2_BOOTLOADER_STATUS_NO_CHANGE = 2
  • TF_SILENT_STEPPER_V2_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • TF_SILENT_STEPPER_V2_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • TF_SILENT_STEPPER_V2_BOOTLOADER_STATUS_CRC_MISMATCH = 5
int tf_silent_stepper_v2_get_bootloader_mode(TF_SilentStepperV2 *silent_stepper_v2, uint8_t *ret_mode)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Returns the current bootloader mode, see tf_silent_stepper_v2_set_bootloader_mode().

The following constants are available for this function:

For ret_mode:

  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_BOOTLOADER = 0
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_FIRMWARE = 1
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • TF_SILENT_STEPPER_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
int tf_silent_stepper_v2_set_write_firmware_pointer(TF_SilentStepperV2 *silent_stepper_v2, uint32_t pointer)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • pointer – Type: uint32_t, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Sets the firmware pointer for tf_silent_stepper_v2_write_firmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int tf_silent_stepper_v2_write_firmware(TF_SilentStepperV2 *silent_stepper_v2, const uint8_t data[64], uint8_t *ret_status)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • data – Type: const uint8_t[64], Range: [0 to 255]
Output Parameters:
  • ret_status – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Writes 64 Bytes of firmware at the position as written by tf_silent_stepper_v2_set_write_firmware_pointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int tf_silent_stepper_v2_write_uid(TF_SilentStepperV2 *silent_stepper_v2, uint32_t uid)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
  • uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

int tf_silent_stepper_v2_read_uid(TF_SilentStepperV2 *silent_stepper_v2, uint32_t *ret_uid)
Parameters:
  • silent_stepper_v2 – Type: TF_SilentStepperV2 *
Output Parameters:
  • ret_uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

TF_SILENT_STEPPER_V2_DEVICE_IDENTIFIER

This constant is used to identify a Silent Stepper Bricklet 2.0.

The functions tf_silent_stepper_v2_get_identity() and tf_hal_get_device_info() have a device_identifier output parameter to specify the Brick's or Bricklet's type.

TF_SILENT_STEPPER_V2_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Silent Stepper Bricklet 2.0.