Visual Basic .NET - Isolator Bricklet

This is the description of the Visual Basic .NET API bindings for the Isolator Bricklet. General information and technical specifications for the Isolator Bricklet are summarized in its hardware description.

An installation guide for the Visual Basic .NET API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.vb)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Imports System
Imports Tinkerforge

Module ExampleSimple
    Const HOST As String = "localhost"
    Const PORT As Integer = 4223
    Const UID As String = "XYZ" ' Change XYZ to the UID of your Isolator Bricklet

    Sub Main()
        Dim ipcon As New IPConnection() ' Create IP connection
        Dim i As New BrickletIsolator(UID, ipcon) ' Create device object

        ipcon.Connect(HOST, PORT) ' Connect to brickd
        ' Don't use device before ipcon is connected

        ' Get current statistics
        Dim messagesFromBrick, messagesFromBricklet As Long
        Dim connectedBrickletDeviceIdentifier As Integer
        Dim connectedBrickletUID As String

        i.GetStatistics(messagesFromBrick, messagesFromBricklet, _
                        connectedBrickletDeviceIdentifier, connectedBrickletUID)

        Console.WriteLine("Messages From Brick: " + messagesFromBrick.ToString())
        Console.WriteLine("Messages From Bricklet: " + messagesFromBricklet.ToString())
        Console.WriteLine("Connected Bricklet Device Identifier: " + connectedBrickletDeviceIdentifier.ToString())
        Console.WriteLine("Connected Bricklet UID: " + connectedBrickletUID)

        Console.WriteLine("Press key to exit")
        Console.ReadLine()
        ipcon.Disconnect()
    End Sub
End Module

API

Since Visual Basic .NET does not support multiple return values directly, we use the ByRef keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

Class BrickletIsolator(ByVal uid As String, ByVal ipcon As IPConnection)

Creates an object with the unique device ID uid:

Dim isolator As New BrickletIsolator("YOUR_DEVICE_UID", ipcon)

This object can then be used after the IP Connection is connected (see examples above).

Sub BrickletIsolator.GetStatistics(ByRef messagesFromBrick As Long, ByRef messagesFromBricklet As Long, ByRef connectedBrickletDeviceIdentifier As Integer, ByRef connectedBrickletUID As String)
Output Parameters:
  • messagesFromBrick – Type: Long, Range: [0 to 232 - 1]
  • messagesFromBricklet – Type: Long, Range: [0 to 232 - 1]
  • connectedBrickletDeviceIdentifier – Type: Integer, Range: [0 to 216 - 1]
  • connectedBrickletUID – Type: String, Length: up to 8

Returns statistics for the Isolator Bricklet.

Advanced Functions

Sub BrickletIsolator.SetSPITFPBaudrateConfig(ByVal enableDynamicBaudrate As Boolean, ByVal minimumDynamicBaudrate As Long)
Parameters:
  • enableDynamicBaudrate – Type: Boolean, Default: true
  • minimumDynamicBaudrate – Type: Long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 400000

The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Isolator Bricklet will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.

The baudrate for communication config between Brick and Isolator Bricklet can be set through the API of the Brick.

The baudrate will be increased exponentially if lots of data is send/received and decreased linearly if little data is send/received.

This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.

In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.

The maximum value of the baudrate can be set per port with the function SetSPITFPBaudrate(). If the dynamic baudrate is disabled, the baudrate as set by SetSPITFPBaudrate() will be used statically.

Sub BrickletIsolator.GetSPITFPBaudrateConfig(ByRef enableDynamicBaudrate As Boolean, ByRef minimumDynamicBaudrate As Long)
Output Parameters:
  • enableDynamicBaudrate – Type: Boolean, Default: true
  • minimumDynamicBaudrate – Type: Long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 400000

Returns the baudrate config, see SetSPITFPBaudrateConfig().

Sub BrickletIsolator.SetSPITFPBaudrate(ByVal baudrate As Long)
Parameters:
  • baudrate – Type: Long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 1400000

Sets the baudrate for a the communication between Isolator Bricklet and the connected Bricklet. The baudrate for communication between Brick and Isolator Bricklet can be set through the API of the Brick.

If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference (see GetSPITFPErrorCount()) you can decrease the baudrate.

If the dynamic baudrate feature is enabled, the baudrate set by this function corresponds to the maximum baudrate (see SetSPITFPBaudrateConfig()).

Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in you applications we recommend to not change the baudrate.

Function BrickletIsolator.GetSPITFPBaudrate() As Long
Returns:
  • baudrate – Type: Long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 1400000

Returns the baudrate, see SetSPITFPBaudrate().

Sub BrickletIsolator.GetIsolatorSPITFPErrorCount(ByRef errorCountACKChecksum As Long, ByRef errorCountMessageChecksum As Long, ByRef errorCountFrame As Long, ByRef errorCountOverflow As Long)
Output Parameters:
  • errorCountACKChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Long, Range: [0 to 232 - 1]

Returns the error count for the communication between Isolator Bricklet and the connected Bricklet. Call GetSPITFPErrorCount() to get the error count between Isolator Bricklet and Brick.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.
Sub BrickletIsolator.GetSPITFPErrorCount(ByRef errorCountAckChecksum As Long, ByRef errorCountMessageChecksum As Long, ByRef errorCountFrame As Long, ByRef errorCountOverflow As Long)
Output Parameters:
  • errorCountAckChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

Function BrickletIsolator.SetBootloaderMode(ByVal mode As Byte) As Byte
Parameters:
  • mode – Type: Byte, Range: See constants
Returns:
  • status – Type: Byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletIsolator.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIsolator.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIsolator.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIsolator.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIsolator.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletIsolator.BOOTLOADER_STATUS_OK = 0
  • BrickletIsolator.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletIsolator.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletIsolator.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletIsolator.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletIsolator.BOOTLOADER_STATUS_CRC_MISMATCH = 5
Function BrickletIsolator.GetBootloaderMode() As Byte
Returns:
  • mode – Type: Byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletIsolator.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIsolator.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIsolator.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIsolator.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIsolator.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
Sub BrickletIsolator.SetWriteFirmwarePointer(ByVal pointer As Long)
Parameters:
  • pointer – Type: Long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Function BrickletIsolator.WriteFirmware(ByVal data() As Byte) As Byte
Parameters:
  • data – Type: Byte Array, Length: 64, Range: [0 to 255]
Returns:
  • status – Type: Byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Sub BrickletIsolator.SetStatusLEDConfig(ByVal config As Byte)
Parameters:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletIsolator.STATUS_LED_CONFIG_OFF = 0
  • BrickletIsolator.STATUS_LED_CONFIG_ON = 1
  • BrickletIsolator.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIsolator.STATUS_LED_CONFIG_SHOW_STATUS = 3
Function BrickletIsolator.GetStatusLEDConfig() As Byte
Returns:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletIsolator.STATUS_LED_CONFIG_OFF = 0
  • BrickletIsolator.STATUS_LED_CONFIG_ON = 1
  • BrickletIsolator.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIsolator.STATUS_LED_CONFIG_SHOW_STATUS = 3
Function BrickletIsolator.GetChipTemperature() As Short
Returns:
  • temperature – Type: Short, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

Sub BrickletIsolator.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

Sub BrickletIsolator.WriteUID(ByVal uid As Long)
Parameters:
  • uid – Type: Long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

Function BrickletIsolator.ReadUID() As Long
Returns:
  • uid – Type: Long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Sub BrickletIsolator.GetIdentity(ByRef uid As String, ByRef connectedUid As String, ByRef position As Char, ByRef hardwareVersion() As Byte, ByRef firmwareVersion() As Byte, ByRef deviceIdentifier As Integer)
Output Parameters:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: Char, Range: ["a"C to "h"C, "i"C, "z"C]
  • hardwareVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • firmwareVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • deviceIdentifier – Type: Integer, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). The Raspberry Pi HAT (Zero) Brick is always at position 'i' and the Bricklet connected to an Isolator Bricklet is always as position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

Sub BrickletIsolator.SetStatisticsCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the StatisticsCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

New in version 2.0.2 (Plugin).

Sub BrickletIsolator.GetStatisticsCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetStatisticsCallbackConfiguration().

New in version 2.0.2 (Plugin).

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

Sub MyCallback(ByVal sender As BrickletIsolator, ByVal value As Short)
    Console.WriteLine("Value: {0}", value)
End Sub

AddHandler isolator.ExampleCallback, AddressOf MyCallback

The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

Event BrickletIsolator.StatisticsCallback(ByVal sender As BrickletIsolator, ByVal messagesFromBrick As Long, ByVal messagesFromBricklet As Long, ByVal connectedBrickletDeviceIdentifier As Integer, ByVal connectedBrickletUID As String)
Callback Parameters:
  • sender – Type: BrickletIsolator
  • messagesFromBrick – Type: Long, Range: [0 to 232 - 1]
  • messagesFromBricklet – Type: Long, Range: [0 to 232 - 1]
  • connectedBrickletDeviceIdentifier – Type: Integer, Range: [0 to 216 - 1]
  • connectedBrickletUID – Type: String, Length: up to 8

This callback is triggered periodically according to the configuration set by SetStatisticsCallbackConfiguration().

The parameters are the same as GetStatistics().

New in version 2.0.2 (Plugin).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

Function BrickletIsolator.GetAPIVersion() As Byte()
Output Parameters:
  • apiVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

Function BrickletIsolator.GetResponseExpected(ByVal functionId As Byte) As Boolean
Parameters:
  • functionId – Type: Byte, Range: See constants
Returns:
  • responseExpected – Type: Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletIsolator.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 2
  • BrickletIsolator.FUNCTION_SET_SPITFP_BAUDRATE = 4
  • BrickletIsolator.FUNCTION_SET_STATISTICS_CALLBACK_CONFIGURATION = 7
  • BrickletIsolator.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIsolator.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIsolator.FUNCTION_RESET = 243
  • BrickletIsolator.FUNCTION_WRITE_UID = 248
Sub BrickletIsolator.SetResponseExpected(ByVal functionId As Byte, ByVal responseExpected As Boolean)
Parameters:
  • functionId – Type: Byte, Range: See constants
  • responseExpected – Type: Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletIsolator.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 2
  • BrickletIsolator.FUNCTION_SET_SPITFP_BAUDRATE = 4
  • BrickletIsolator.FUNCTION_SET_STATISTICS_CALLBACK_CONFIGURATION = 7
  • BrickletIsolator.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIsolator.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIsolator.FUNCTION_RESET = 243
  • BrickletIsolator.FUNCTION_WRITE_UID = 248
Sub BrickletIsolator.SetResponseExpectedAll(ByVal responseExpected As Boolean)
Parameters:
  • responseExpected – Type: Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Constants

Const BrickletIsolator.DEVICE_IDENTIFIER

This constant is used to identify a Isolator Bricklet.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

Const BrickletIsolator.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Isolator Bricklet.