MATLAB/Octave - Real-Time Clock Bricklet 2.0

Dies ist die Beschreibung der MATLAB/Octave API Bindings für das Real-Time Clock Bricklet 2.0. Allgemeine Informationen über die Funktionen und technischen Spezifikationen des Real-Time Clock Bricklet 2.0 sind in dessen Hardware Beschreibung zusammengefasst.

Eine Installationanleitung für die MATLAB/Octave API Bindings ist Teil deren allgemeine Beschreibung.

Beispiele

Der folgende Beispielcode ist Public Domain (CC0 1.0).

Simple (MATLAB)

Download (matlab_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function matlab_example_simple()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletRealTimeClockV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Real-Time Clock Bricklet 2.0

    ipcon = IPConnection(); % Create IP connection
    rtc = handle(BrickletRealTimeClockV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Get current date and time
    dateTime = rtc.getDateTime();

    fprintf('Year: %i\n', dateTime.year);
    fprintf('Month: %i\n', dateTime.month);
    fprintf('Day: %i\n', dateTime.day);
    fprintf('Hour: %i\n', dateTime.hour);
    fprintf('Minute: %i\n', dateTime.minute);
    fprintf('Second: %i\n', dateTime.second);
    fprintf('Centisecond: %i\n', dateTime.centisecond);

    if dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_MONDAY
        fprintf('Weekday: Monday\n');
    elseif dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_TUESDAY
        fprintf('Weekday: Tuesday\n');
    elseif dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY
        fprintf('Weekday: Wednesday\n');
    elseif dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_THURSDAY
        fprintf('Weekday: Thursday\n');
    elseif dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_FRIDAY
        fprintf('Weekday: Friday\n');
    elseif dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_SATURDAY
        fprintf('Weekday: Saturday\n');
    elseif dateTime.weekday == BrickletRealTimeClockV2.WEEKDAY_SUNDAY
        fprintf('Weekday: Sunday\n');
    end

    fprintf('Timestamp: %i ms\n', dateTime.timestamp);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

Callback (MATLAB)

Download (matlab_example_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function matlab_example_callback()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletRealTimeClockV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Real-Time Clock Bricklet 2.0

    ipcon = IPConnection(); % Create IP connection
    rtc = handle(BrickletRealTimeClockV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register date and time callback to function cb_date_time
    set(rtc, 'DateTimeCallback', @(h, e) cb_date_time(e));

    % Set period for date and time callback to 5s (5000ms)
    rtc.setDateTimeCallbackConfiguration(5000);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

% Callback function for date and time callback
function cb_date_time(e)
    fprintf('Year: %i\n', e.year);
    fprintf('Month: %i\n', e.month);
    fprintf('Day: %i\n', e.day);
    fprintf('Hour: %i\n', e.hour);
    fprintf('Minute: %i\n', e.minute);
    fprintf('Second: %i\n', e.second);
    fprintf('Centisecond: %i\n', e.centisecond);

    if e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_MONDAY
        fprintf('Weekday: Monday\n');
    elseif e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_TUESDAY
        fprintf('Weekday: Tuesday\n');
    elseif e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY
        fprintf('Weekday: Wednesday\n');
    elseif e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_THURSDAY
        fprintf('Weekday: Thursday\n');
    elseif e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_FRIDAY
        fprintf('Weekday: Friday\n');
    elseif e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_SATURDAY
        fprintf('Weekday: Saturday\n');
    elseif e.weekday == com.tinkerforge.BrickletRealTimeClockV2.WEEKDAY_SUNDAY
        fprintf('Weekday: Sunday\n');
    end

    fprintf('Timestamp: %i\n', e.timestamp);
    fprintf('\n');
end

Simple (Octave)

Download (octave_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function octave_example_simple()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Real-Time Clock Bricklet 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    rtc = javaObject("com.tinkerforge.BrickletRealTimeClockV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Get current date and time
    dateTime = rtc.getDateTime();

    fprintf("Year: %d\n", dateTime.year);
    fprintf("Month: %d\n", dateTime.month);
    fprintf("Day: %d\n", dateTime.day);
    fprintf("Hour: %d\n", dateTime.hour);
    fprintf("Minute: %d\n", dateTime.minute);
    fprintf("Second: %d\n", dateTime.second);
    fprintf("Centisecond: %d\n", dateTime.centisecond);

    if dateTime.weekday == 1
        fprintf("Weekday: Monday\n");
    elseif dateTime.weekday == 2
        fprintf("Weekday: Tuesday\n");
    elseif dateTime.weekday == 3
        fprintf("Weekday: Wednesday\n");
    elseif dateTime.weekday == 4
        fprintf("Weekday: Thursday\n");
    elseif dateTime.weekday == 5
        fprintf("Weekday: Friday\n");
    elseif dateTime.weekday == 6
        fprintf("Weekday: Saturday\n");
    elseif dateTime.weekday == 7
        fprintf("Weekday: Sunday\n");
    end

    fprintf("Timestamp: %d ms\n", java2int(dateTime.timestamp));

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

function int = java2int(value)
    if compare_versions(version(), "3.8", "<=")
        int = value.intValue();
    else
        int = value;
    end
end

Callback (Octave)

Download (octave_example_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function octave_example_callback()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Real-Time Clock Bricklet 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    rtc = javaObject("com.tinkerforge.BrickletRealTimeClockV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register date and time callback to function cb_date_time
    rtc.addDateTimeCallback(@cb_date_time);

    % Set period for date and time callback to 5s (5000ms)
    rtc.setDateTimeCallbackConfiguration(5000);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

% Callback function for date and time callback
function cb_date_time(e)
    fprintf("Year: %d\n", e.year);
    fprintf("Month: %d\n", e.month);
    fprintf("Day: %d\n", e.day);
    fprintf("Hour: %d\n", e.hour);
    fprintf("Minute: %d\n", e.minute);
    fprintf("Second: %d\n", e.second);
    fprintf("Centisecond: %d\n", e.centisecond);

    if e.weekday == 1
        fprintf("Weekday: Monday\n");
    elseif e.weekday == 2
        fprintf("Weekday: Tuesday\n");
    elseif e.weekday == 3
        fprintf("Weekday: Wednesday\n");
    elseif e.weekday == 4
        fprintf("Weekday: Thursday\n");
    elseif e.weekday == 5
        fprintf("Weekday: Friday\n");
    elseif e.weekday == 6
        fprintf("Weekday: Saturday\n");
    elseif e.weekday == 7
        fprintf("Weekday: Sunday\n");
    end

    fprintf("Timestamp: %d\n", java2int(e.timestamp));
    fprintf("\n");
end

function int = java2int(value)
    if compare_versions(version(), "3.8", "<=")
        int = value.intValue();
    else
        int = value;
    end
end

API

Prinzipiell kann jede Methode der MATLAB Bindings eine TimeoutException werfen. Diese Exception wird geworfen wenn das Gerät nicht antwortet. Wenn eine Kabelverbindung genutzt wird, ist es unwahrscheinlich, dass die Exception geworfen wird (unter der Annahme, dass das Gerät nicht abgesteckt wird). Bei einer drahtlosen Verbindung können Zeitüberschreitungen auftreten, sobald die Entfernung zum Gerät zu groß wird.

Neben der TimeoutException kann auch noch eine NotConnectedException geworfen werden, wenn versucht wird mit einem Brick oder Bricklet zu kommunizieren, aber die IP Connection nicht verbunden ist.

Da die MATLAB Bindings auf Java basieren und Java nicht mehrere Rückgabewerte unterstützt und eine Referenzrückgabe für elementare Type nicht möglich ist, werden kleine Klassen verwendet, die nur aus Member-Variablen bestehen. Die Member-Variablen des zurückgegebenen Objektes werden in der jeweiligen Methodenbeschreibung erläutert.

Das Package für alle Brick/Bricklet Bindings und die IP Connection ist com.tinkerforge.*

Alle folgend aufgelisteten Methoden sind Thread-sicher.

Grundfunktionen

public class BrickletRealTimeClockV2(String uid, IPConnection ipcon)

Erzeugt ein Objekt mit der eindeutigen Geräte ID uid.

In MATLAB:

import com.tinkerforge.BrickletRealTimeClockV2;

realTimeClockV2 = BrickletRealTimeClockV2("YOUR_DEVICE_UID", ipcon);

In Octave:

realTimeClockV2 = java_new("com.tinkerforge.BrickletRealTimeClockV2", "YOUR_DEVICE_UID", ipcon);

Dieses Objekt kann benutzt werden, nachdem die IP Connection verbunden ist (siehe Beispiele oben).

public void setDateTime(int year, int month, int day, int hour, int minute, int second, int centisecond, int weekday)

Setzt das aktuelle Datum (inklusive Wochentag) und die aktuelle Zeit mit Hundertstelsekunden Auflösung.

Mögliche Wertebereiche:

  • Year: 2000 bis 2099
  • Month: 1 bis 12 (Januar bis Dezember)
  • Day: 1 bis 31
  • Hour: 0 bis 23
  • Minute: 0 bis 59
  • Second: 0 bis 59
  • Centisecond: 0 bis 99
  • Weekday: 1 bis 7 (Montag bis Sonntag)

Wenn die Backup Batterie eingebaut ist, dann behält die Echtzeituhr Datum und Zeit auch dann, wenn kein Brick das Bricklet mit Strom versorgt.

Die Echtzeituhr behandelt Schaltjahre und fügt den 29. Februar entsprechend ein. Schaltsekunden, Zeitzonen und die Sommerzeit werden jedoch nicht behandelt.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7
public BrickletRealTimeClockV2.DateTime getDateTime()

Gibt das aktuelle Datum (inklusive Wochentag) und die aktuelle Zeit der Echtzeituhr mit Hundertstelsekunden Auflösung zurück.

Der Zeitstempel stellt das aktuelle Datum und die aktuelle Zeit der Echtzeituhr in Millisekunden umgerechnet dar.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7

Das zurückgegebene Objekt enthält die Public-Member-Variablen int year, int month, int day, int hour, int minute, int second, int centisecond, int weekday und long timestamp.

public long getTimestamp()

Gibt das aktuelle Datum und Zeit der Echtzeituhr in Millisekunden umgerechnet zurück. Der Zeitstempel hat eine effektive Auflösung von Hundertstelsekunden.

Fortgeschrittene Funktionen

public void setOffset(int offset)

Setzt den Versatz ein, den die Echtzeituhr ausgleichen soll. Der Versatz kann in 2,17 ppm Schritten zwischen -277,76 ppm (-128) und +275,59 ppm (127) eingestellt werden.

Die Echtzeituhr kann von der eigentlichen Zeit abweichen, bedingt durch die Frequenzabweichung des verbauten 32,768 kHz Quarzes. Selbst ohne Ausgleich (Werkseinstellung) sollte die daraus entstehende Zeitabweichung höchstens ±20 ppm (±52,6 Sekunden pro Monat) betragen.

Diese Abweichung kann berechnet werden, durch Vergleich der gleichen Zeitdauer einmal mit der Echtzeituhr (rtc_duration) gemessen und einmal mit einer genauen Kontrolluhr (ref_duration) gemessen.

Um das beste Ergebnis zu erzielen, sollte der eingestellte Versatz zuerst auf 0 ppm gesetzt und dann eine Zeitdauer von mindestens 6 Stunden gemessen werden.

Der neue Versatz (new_offset) kann dann wie folgt aus dem aktuell eingestellten Versatz (current_offset) und den gemessenen Zeitdauern berechnet werden:

new_offset = current_offset - round(1000000 * (rtc_duration - ref_duration) / rtc_duration / 2.17)

Wenn der Versatz berechnet werden soll, dann empfehlen wir den Kalibrierungsdialog in Brick Viewer dafür zu verwenden, anstatt die Berechnung von Hand durchzuführen.

Der Versatz wird im EEPROM des Bricklets gespeichert und muss nur einmal gesetzt werden.

public int getOffset()

Gibt den Versatz zurück, wie von setOffset() gesetzt.

public int[] getAPIVersion()

Gibt die Version der API Definition (Major, Minor, Revision) zurück, die diese API Bindings implementieren. Dies ist weder die Release-Version dieser API Bindings noch gibt es in irgendeiner Weise Auskunft über den oder das repräsentierte(n) Brick oder Bricklet.

public boolean getResponseExpected(int functionId)

Gibt das Response-Expected-Flag für die Funktion mit der angegebenen Funktions IDs zurück. Es ist true falls für die Funktion beim Aufruf eine Antwort erwartet wird, false andernfalls.

Für Getter-Funktionen ist diese Flag immer gesetzt und kann nicht entfernt werden, da diese Funktionen immer eine Antwort senden. Für Konfigurationsfunktionen für Callbacks ist es standardmäßig gesetzt, kann aber entfernt werden mittels setResponseExpected(). Für Setter-Funktionen ist es standardmäßig nicht gesetzt, kann aber gesetzt werden.

Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME = 1
  • BrickletRealTimeClockV2.FUNCTION_SET_OFFSET = 4
  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME_CALLBACK_CONFIGURATION = 6
  • BrickletRealTimeClockV2.FUNCTION_SET_ALARM = 8
  • BrickletRealTimeClockV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletRealTimeClockV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletRealTimeClockV2.FUNCTION_RESET = 243
  • BrickletRealTimeClockV2.FUNCTION_WRITE_UID = 248
public void setResponseExpected(int functionId, boolean responseExpected)

Ändert das Response-Expected-Flag für die Funktion mit der angegebenen Funktion IDs. Diese Flag kann nur für Setter-Funktionen (Standardwert: false) und Konfigurationsfunktionen für Callbacks (Standardwert: true) geändert werden. Für Getter-Funktionen ist das Flag immer gesetzt.

Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME = 1
  • BrickletRealTimeClockV2.FUNCTION_SET_OFFSET = 4
  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME_CALLBACK_CONFIGURATION = 6
  • BrickletRealTimeClockV2.FUNCTION_SET_ALARM = 8
  • BrickletRealTimeClockV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletRealTimeClockV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletRealTimeClockV2.FUNCTION_RESET = 243
  • BrickletRealTimeClockV2.FUNCTION_WRITE_UID = 248
public void setResponseExpectedAll(boolean responseExpected)

Ändert das Response-Expected-Flag für alle Setter-Funktionen und Konfigurationsfunktionen für Callbacks diese Gerätes.

public BrickletRealTimeClockV2.SPITFPErrorCount getSPITFPErrorCount()

Gibt die Anzahl der Fehler die während der Kommunikation zwischen Brick und Bricklet aufgetreten sind zurück.

Die Fehler sind aufgeteilt in

  • ACK-Checksummen Fehler,
  • Message-Checksummen Fehler,
  • Framing Fehler und
  • Overflow Fehler.

Die Fehlerzähler sind für Fehler die auf der Seite des Bricklets auftreten. Jedes Brick hat eine ähnliche Funktion welche die Fehler auf Brickseite ausgibt.

Das zurückgegebene Objekt enthält die Public-Member-Variablen long errorCountAckChecksum, long errorCountMessageChecksum, long errorCountFrame und long errorCountOverflow.

public int setBootloaderMode(int mode)

Setzt den Bootloader-Modus und gibt den Status zurück nachdem die Modusänderungsanfrage bearbeitet wurde.

Mit dieser Funktion ist es möglich vom Bootloader- in den Firmware-Modus zu wechseln und umgekehrt. Ein Welchsel vom Bootlodaer- in der den Firmware-Modus ist nur möglich wenn Entry-Funktion, Device Identifier und CRC vorhanden und korrekt sind.

Diese Funktion wird vom Brick Viewer während des flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_OK = 0
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
public int getBootloaderMode()

Gibt den aktuellen Bootloader-Modus zurück, siehe setBootloaderMode().

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
public void setWriteFirmwarePointer(long pointer)

Setzt den Firmware-Pointer für writeFirmware(). Der Pointer muss um je 64 Byte erhöht werden. Die Daten werden alle 4 Datenblöcke in den Flash geschrieben (4 Datenblöcke entsprechen einer Page mit 256 Byte).

Diese Funktion wird vom Brick Viewer während des flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.

public int writeFirmware(int[] data)

Schreibt 64 Bytes Firmware an die Position die vorher von setWriteFirmwarePointer() gesetzt wurde. Die Firmware wird alle 4 Datenblöcke in den Flash geschrieben.

Eine Firmware kann nur im Bootloader-Mode geschrieben werden.

Diese Funktion wird vom Brick Viewer während des flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.

public void setStatusLEDConfig(int config)

Setzt die Konfiguration der Status-LED. Standardmäßig zeigt die LED die Kommunikationsdatenmenge an. Sie blinkt einmal auf pro 10 empfangenen Datenpaketen zwischen Brick und Bricklet.

Die LED kann auch permanent an/aus gestellt werden oder einen Herzschlag anzeigen.

Wenn das Bricklet sich im Bootlodermodus befindet ist die LED aus.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_ON = 1
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
public int getStatusLEDConfig()

Gibt die Konfiguration zurück, wie von setStatusLEDConfig() gesetzt.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_ON = 1
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
public int getChipTemperature()

Gibt die Temperatur in °C, gemessen im Mikrocontroller, aus. Der Rückgabewert ist nicht die Umgebungstemperatur.

Die Temperatur ist lediglich proportional zur echten Temperatur und hat eine hohe Ungenauigkeit. Daher beschränkt sich der praktische Nutzen auf die Indikation von Temperaturveränderungen.

public void reset()

Ein Aufruf dieser Funktion setzt das Bricklet zurück. Nach einem Neustart sind alle Konfiguration verloren.

Nach dem Zurücksetzen ist es notwendig neue Objekte zu erzeugen, Funktionsaufrufe auf bestehenden führen zu undefiniertem Verhalten.

public void writeUID(long uid)

Schreibt eine neue UID in den Flash. Die UID muss zuerst vom Base58 encodierten String in einen Integer decodiert werden.

Wir empfehlen die Nutzung des Brick Viewers zum ändern der UID.

public long readUID()

Gibt die aktuelle UID als Integer zurück. Dieser Integer kann als Base58 encodiert werden um an den üblichen UID-String zu gelangen.

public BrickletRealTimeClockV2.Identity getIdentity()

Gibt die UID, die UID zu der das Bricklet verbunden ist, die Position, die Hard- und Firmware Version sowie den Device Identifier zurück.

Die Position kann 'a', 'b', 'c' oder 'd' sein.

Eine Liste der Device Identifier Werte ist hier zu finden. Es gibt auch eine Konstante für den Device Identifier dieses Bricklets.

Das zurückgegebene Objekt enthält die Public-Member-Variablen String uid, String connectedUid, char position, int[] hardwareVersion, int[] firmwareVersion und int deviceIdentifier.

Konfigurationsfunktionen für Callbacks

public void setDateTimeCallbackConfiguration(long period)

Setzt die Periode in ms mit welcher der DateTimeCallback Callback ausgelöst wird. Ein Wert von 0 deaktiviert den Callback.

Der Standardwert ist 0.

public long getDateTimeCallbackConfiguration()

Gibt die Periode zurück, wie von setDateTimeCallbackConfiguration() gesetzt.

public void setAlarm(int month, int day, int hour, int minute, int second, int weekday, int interval)

Konfiguriert einen wiederholbaren Alarm. Der AlarmCallback Callback wird ausgelöst, wenn das aktuelle Datum und die aktuelle Uhrzeit mit dem konfigurierten Alarm übereinstimmen.

Wird ein Parameter auf -1 gesetzt, dann wird es deaktiviert und nimmt nicht am Übereinstimmungstest teil. Werden alle Parameter auf -1 gesetzt, dann ist der Alarm vollständig deaktiviert.

Um z.B. den Alarm jeden Tag um 7:30 Uhr auszulösen kann dieser auf (-1, -1, 7, 30, -1, -1, -1) konfiguriert werden. Die Stunde ist auf 7 gesetzt und die Minute auf 30. Der Alarm wird ausgelöst, wenn alle aktiven Parameter mit dem aktuellen Datum und der aktuellen Zeit übereinstimmen.

Das Intervall hat eine spezielle Rolle. Wenn es nicht auf -1 gesetzt ist, dann konfiguriert sich der Alarm nach jeder Auslösung entsprechend selbst neu. Dies kann für wiederholende Alarme genutzt werden, die nicht durch Übereinstimmung mit Datum und Uhrzeit abgebildet werden können. Um z.B. alle 23 Sekunden einen Alarm auszulösen kann dieser als (-1, -1, -1, -1, -1, -1, 23) konfiguriert werden. Intern nimmt das Bricklet das aktuelle Datum und die aktuelle Uhrzeit, addiert 23 Sekunden und setzt das Ergebnis als Alarm. Der erste Alarm wir dann 23 Sekunden nach dem Aufruf ausgelöst werden. Da das Intervall nicht -1 ist wird das Bricklet dann intern wieder das gleiche tun: 23 Sekunden auf das aktuelle Datum und die aktuelle Uhrzeit addieren und das Ergebnis als Alarm setzten. Dadurch entsteht ein sich alle 23 Sekunden wiederholender Alarm.

Das Intervall kann auch in Kombination mit den anderen Parametern verwendet werden. Wird z.B. der Alarm auf (-1, -1, 7, 30, -1, -1, 300) konfiguriert dann wird der Alarm jeden Tag um 7:30 Uhr ausgelöst und dann all 5 Minuten wiederholt.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1
  • BrickletRealTimeClockV2.ALARM_INTERVAL_DISABLED = -1
public BrickletRealTimeClockV2.Alarm getAlarm()

Gibt die Alarmkonfiguration zurück, wie von setAlarm() gesetzt.

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1
  • BrickletRealTimeClockV2.ALARM_INTERVAL_DISABLED = -1

Das zurückgegebene Objekt enthält die Public-Member-Variablen int month, int day, int hour, int minute, int second, int weekday und int interval.

Callbacks

Callbacks können registriert werden um zeitkritische oder wiederkehrende Daten vom Gerät zu erhalten. Die Registrierung wird mit MATLABs "set" Funktion durchgeführt. Die Parameter sind ein Gerätobjekt, der Callback-Name und die Callback-Funktion. Hier ein Beispiel in MATLAB:

function my_callback(e)
    fprintf('Parameter: %s\n', e.param);
end

set(device, 'ExampleCallback', @(h, e) my_callback(e));

Die Octave Java Unterstützung unterscheidet sich hier von MATLAB, die "set" Funktion kann hier nicht verwendet werden. Die Registrierung wird in Octave mit "add*Callback" Funktionen des Gerätobjekts durchgeführt. Hier ein Beispiel in Octave:

function my_callback(e)
    fprintf("Parameter: %s\n", e.param);
end

device.addExampleCallback(@my_callback);

Es ist möglich mehrere Callback-Funktion hinzuzufügen und auch mit einem korrespondierenden "remove*Callback" wieder zu entfernen.

Die Parameter des Callbacks werden der Callback-Funktion als Felder der Struktur e übergeben. Diese ist von der java.util.EventObject Klasse abgeleitete. Die verfügbaren Callback-Namen mit den entsprechenden Strukturfeldern werden unterhalb beschrieben.

Bemerkung

Callbacks für wiederkehrende Ereignisse zu verwenden ist immer zu bevorzugen gegenüber der Verwendung von Abfragen. Es wird weniger USB-Bandbreite benutzt und die Latenz ist erheblich geringer, da es keine Paketumlaufzeit gibt.

public callback DateTimeCallback
Parameter:
  • year -- int
  • month -- int
  • day -- int
  • hour -- int
  • minute -- int
  • second -- int
  • centisecond -- int
  • weekday -- int
  • timestamp -- long

Dieser Callback wird mit der Periode, wie gesetzt mit setDateTimeCallbackConfiguration(), ausgelöst. Die Parameter sind die gleichen wie die von getDateTime().

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7

In MATLAB kann die set() Function verwendet werden um diesem Callback eine Callback-Function zuzuweisen.

In Octave kann diesem Callback mit addDateTimeCallback() eine Callback-Function hinzugefügt werde. Eine hinzugefügter Callback-Function kann mit removeDateTimeCallback() wieder entfernt werden.

public callback AlarmCallback
Parameter:
  • year -- int
  • month -- int
  • day -- int
  • hour -- int
  • minute -- int
  • second -- int
  • centisecond -- int
  • weekday -- int
  • timestamp -- long

Dieser Callback wird jedes mal ausgelöst, wenn das aktuelle Datum und die aktuelle Uhrzeit mit dem eingestellten Alarm übereinstimmen (siehe setAlarm()). Die Parameter sind die gleichen wie die von getDateTime().

Die folgenden Konstanten sind für diese Funktion verfügbar:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7

In MATLAB kann die set() Function verwendet werden um diesem Callback eine Callback-Function zuzuweisen.

In Octave kann diesem Callback mit addAlarmCallback() eine Callback-Function hinzugefügt werde. Eine hinzugefügter Callback-Function kann mit removeAlarmCallback() wieder entfernt werden.

Konstanten

public static final int DEVICE_IDENTIFIER

Diese Konstante wird verwendet um ein Real-Time Clock Bricklet 2.0 zu identifizieren.

Die getIdentity() Funktion und der IPConnection.EnumerateCallback Callback der IP Connection haben ein deviceIdentifier Parameter um den Typ des Bricks oder Bricklets anzugeben.

public static final String DEVICE_DISPLAY_NAME

Diese Konstante stellt den Anzeigenamen eines Real-Time Clock Bricklet 2.0 dar.