openHAB - Temperature Bricklet 2.0

This is the description of the openHAB API bindings for the Temperature Bricklet 2.0. General information and technical specifications for the Temperature Bricklet 2.0 are summarized in its hardware description.

An installation guide for the openHAB API bindings is part of their general description.

Thing

UID:
  • tinkerforge:bricklettemperaturev2:[UID]
Required firmware version:
  • 2.0.0
Firmware update supported:
  • yes
Channels:
Actions:
Parameters:
  • Status LED Config – Type: Choice, Default: Show Status
  • The status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets. You can also turn the LED permanently on/off or show a heartbeat. If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
  • Options: Off, On, Show Heartbeat, Show Status

Channels

Temperature

The measured temperature

Type:
  • Number:Temperature
UID:
  • tinkerforge:bricklettemperaturev2:[UID]:BrickletTemperatureV2Temperature
Read only:
  • Yes
Unit:
  • Celsius
Range:
  • -45 Celsius to 130 Celsius (Step 0.01 Celsius)
Parameters:
  • Update Interval – Type: integer, Default: 1000, Unit: ms, Min: 0, Max: 4294967295
  • Specifies the update interval in milliseconds. A value of 0 disables automatic updates.
Heater

Enables/disables the heater. The heater can be used to dry the sensor in extremely wet conditions.

Type:
  • Switch
UID:
  • tinkerforge:bricklettemperaturev2:[UID]:BrickletTemperatureV2Heater
Read only:
  • No

Actions

Actions can be used in rules by creating an action object. All actions return a Map<String, Object>. Returned values can be accessed by name, sometimes the type deduction needs some hints, as shown below:

val actions = getActions("tinkerforge", "tinkerforge:bricklettemperaturev2:[UID]")
val hwVersion = actions.brickletTemperatureV2GetIdentity().get("hardwareVersion") as short[]
logInfo("Example", "Hardware version: " + hwVersion.get(0) + "." + hwVersion.get(1) + "." + hwVersion.get(2))

Basic Actions

brickletTemperatureV2GetTemperature()
Return Map:
  • temperature – Type: int, Unit: 1/100 °C, Range: [-4500 to 13000]

Returns the temperature measured by the sensor.

If you want to get the value periodically, it is recommended to use the Temperature channel. You can set the channel configuration with the configuration of Temperature.

brickletTemperatureV2SetHeaterConfiguration(int heaterConfig)
Parameters:
  • heaterConfig – Type: int, Range: See constants, Default: False

Enables/disables the heater. The heater can be used to test the sensor.

The following constants are available for this function:

For heaterConfig:

  • val HEATER_CONFIG_DISABLED = 0
  • val HEATER_CONFIG_ENABLED = 1
brickletTemperatureV2GetHeaterConfiguration()
Return Map:
  • heaterConfig – Type: int, Range: See constants

Returns the heater configuration as set by Heater.

The following constants are available for this function:

For heaterConfig:

  • val HEATER_CONFIG_DISABLED = 0
  • val HEATER_CONFIG_ENABLED = 1

Advanced Actions

brickletTemperatureV2GetChipTemperature()
Return Map:
  • temperature – Type: int, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

brickletTemperatureV2GetStatusLEDConfig()
Return Map:
  • config – Type: int, Range: See constants, Default: 3

Returns the configuration as set by the thing configuration

The following constants are available for this function:

For config:

  • val STATUS_LED_CONFIG_OFF = 0
  • val STATUS_LED_CONFIG_ON = 1
  • val STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • val STATUS_LED_CONFIG_SHOW_STATUS = 3
brickletTemperatureV2GetSPITFPErrorCount()
Return Map:
  • errorCountAckChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

brickletTemperatureV2GetIdentity()
Return Map:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always as position 'z'.

The device identifier numbers can be found here

Internal Actions

brickletTemperatureV2ReadUID()
Return Map:
  • uid – Type: long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.