Java - Voltage/Current Bricklet 2.0

This is the description of the Java API bindings for the Voltage/Current Bricklet 2.0. General information and technical specifications for the Voltage/Current Bricklet 2.0 are summarized in its hardware description.

An installation guide for the Java API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletVoltageCurrentV2;

public class ExampleSimple {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Voltage/Current Bricklet 2.0
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletVoltageCurrentV2 vc =
          new BrickletVoltageCurrentV2(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current voltage
        int voltage = vc.getVoltage(); // Can throw com.tinkerforge.TimeoutException
        System.out.println("Voltage: " + voltage/1000.0 + " V");

        // Get current current
        int current = vc.getCurrent(); // Can throw com.tinkerforge.TimeoutException
        System.out.println("Current: " + current/1000.0 + " A");

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Callback

Download (ExampleCallback.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletVoltageCurrentV2;

public class ExampleCallback {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Voltage/Current Bricklet 2.0
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletVoltageCurrentV2 vc =
          new BrickletVoltageCurrentV2(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Add current listener
        vc.addCurrentListener(new BrickletVoltageCurrentV2.CurrentListener() {
            public void current(int current) {
                System.out.println("Current: " + current/1000.0 + " A");
            }
        });

        // Set period for current callback to 1s (1000ms) without a threshold
        vc.setCurrentCallbackConfiguration(1000, false, 'x', 0, 0);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Threshold

Download (ExampleThreshold.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletVoltageCurrentV2;

public class ExampleThreshold {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Voltage/Current Bricklet 2.0
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletVoltageCurrentV2 vc =
          new BrickletVoltageCurrentV2(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Add power listener
        vc.addPowerListener(new BrickletVoltageCurrentV2.PowerListener() {
            public void power(int power) {
                System.out.println("power: " + power/1000.0 + " W");
            }
        });

        // Configure threshold for power "greater than 10 W"
        // with a debounce period of 1s (1000ms)
        vc.setPowerCallbackConfiguration(1000, false, '>', 10*1000, 0);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

API

Generally, every method of the Java bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletVoltageCurrentV2(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • voltageCurrentV2 – Type: BrickletVoltageCurrentV2

Creates an object with the unique device ID uid:

BrickletVoltageCurrentV2 voltageCurrentV2 = new BrickletVoltageCurrentV2("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected (see examples above).

int BrickletVoltageCurrentV2.getCurrent()
Returns:
  • current – Type: int, Unit: 1 mA, Range: [-20000 to 20000]

Returns the current.

If you want to get the value periodically, it is recommended to use the CurrentListener listener. You can set the listener configuration with setCurrentCallbackConfiguration().

int BrickletVoltageCurrentV2.getVoltage()
Returns:
  • voltage – Type: int, Unit: 1 mV, Range: [0 to 36000]

Returns the voltage.

If you want to get the value periodically, it is recommended to use the VoltageListener listener. You can set the listener configuration with setVoltageCallbackConfiguration().

int BrickletVoltageCurrentV2.getPower()
Returns:
  • power – Type: int, Unit: 1 mW, Range: [0 to 720000]

Returns the power.

If you want to get the value periodically, it is recommended to use the PowerListener listener. You can set the listener configuration with setPowerCallbackConfiguration().

void BrickletVoltageCurrentV2.setConfiguration(int averaging, int voltageConversionTime, int currentConversionTime)
Parameters:
  • averaging – Type: int, Range: See constants, Default: 3
  • voltageConversionTime – Type: int, Range: See constants, Default: 4
  • currentConversionTime – Type: int, Range: See constants, Default: 4

Sets the configuration of the Voltage/Current Bricklet 2.0. It is possible to configure number of averages as well as voltage and current conversion time.

The following constants are available for this function:

For averaging:

  • BrickletVoltageCurrentV2.AVERAGING_1 = 0
  • BrickletVoltageCurrentV2.AVERAGING_4 = 1
  • BrickletVoltageCurrentV2.AVERAGING_16 = 2
  • BrickletVoltageCurrentV2.AVERAGING_64 = 3
  • BrickletVoltageCurrentV2.AVERAGING_128 = 4
  • BrickletVoltageCurrentV2.AVERAGING_256 = 5
  • BrickletVoltageCurrentV2.AVERAGING_512 = 6
  • BrickletVoltageCurrentV2.AVERAGING_1024 = 7

For voltageConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7

For currentConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7
BrickletVoltageCurrentV2.Configuration BrickletVoltageCurrentV2.getConfiguration()
Return Object:
  • averaging – Type: int, Range: See constants, Default: 3
  • voltageConversionTime – Type: int, Range: See constants, Default: 4
  • currentConversionTime – Type: int, Range: See constants, Default: 4

Returns the configuration as set by setConfiguration().

The following constants are available for this function:

For averaging:

  • BrickletVoltageCurrentV2.AVERAGING_1 = 0
  • BrickletVoltageCurrentV2.AVERAGING_4 = 1
  • BrickletVoltageCurrentV2.AVERAGING_16 = 2
  • BrickletVoltageCurrentV2.AVERAGING_64 = 3
  • BrickletVoltageCurrentV2.AVERAGING_128 = 4
  • BrickletVoltageCurrentV2.AVERAGING_256 = 5
  • BrickletVoltageCurrentV2.AVERAGING_512 = 6
  • BrickletVoltageCurrentV2.AVERAGING_1024 = 7

For voltageConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7

For currentConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7

Advanced Functions

void BrickletVoltageCurrentV2.setCalibration(int voltageMultiplier, int voltageDivisor, int currentMultiplier, int currentDivisor)
Parameters:
  • voltageMultiplier – Type: int, Range: [0 to 216 - 1]
  • voltageDivisor – Type: int, Range: [0 to 216 - 1]
  • currentMultiplier – Type: int, Range: [0 to 216 - 1]
  • currentDivisor – Type: int, Range: [0 to 216 - 1]

Since the ADC and the shunt resistor used for the measurements are not perfect they need to be calibrated by a multiplier and a divisor if a very precise reading is needed.

For example, if you are expecting a current of 1000mA and you are measuring 1023mA, you can calibrate the Voltage/Current Bricklet by setting the current multiplier to 1000 and the divisor to 1023. The same applies for the voltage.

The calibration will be saved on the EEPROM of the Voltage/Current Bricklet and only needs to be done once.

BrickletVoltageCurrentV2.Calibration BrickletVoltageCurrentV2.getCalibration()
Return Object:
  • voltageMultiplier – Type: int, Range: [0 to 216 - 1]
  • voltageDivisor – Type: int, Range: [0 to 216 - 1]
  • currentMultiplier – Type: int, Range: [0 to 216 - 1]
  • currentDivisor – Type: int, Range: [0 to 216 - 1]

Returns the calibration as set by setCalibration().

BrickletVoltageCurrentV2.SPITFPErrorCount BrickletVoltageCurrentV2.getSPITFPErrorCount()
Return Object:
  • errorCountAckChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

int BrickletVoltageCurrentV2.setBootloaderMode(int mode)
Parameters:
  • mode – Type: int, Range: See constants
Returns:
  • status – Type: int, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_OK = 0
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
int BrickletVoltageCurrentV2.getBootloaderMode()
Returns:
  • mode – Type: int, Range: See constants

Returns the current bootloader mode, see setBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
void BrickletVoltageCurrentV2.setWriteFirmwarePointer(long pointer)
Parameters:
  • pointer – Type: long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for writeFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int BrickletVoltageCurrentV2.writeFirmware(int[] data)
Parameters:
  • data – Type: int[], Length: 64, Range: [0 to 255]
Returns:
  • status – Type: int, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by setWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

void BrickletVoltageCurrentV2.setStatusLEDConfig(int config)
Parameters:
  • config – Type: int, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_ON = 1
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
int BrickletVoltageCurrentV2.getStatusLEDConfig()
Returns:
  • config – Type: int, Range: See constants, Default: 3

Returns the configuration as set by setStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_ON = 1
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
int BrickletVoltageCurrentV2.getChipTemperature()
Returns:
  • temperature – Type: int, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

void BrickletVoltageCurrentV2.reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

void BrickletVoltageCurrentV2.writeUID(long uid)
Parameters:
  • uid – Type: long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

long BrickletVoltageCurrentV2.readUID()
Returns:
  • uid – Type: long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

BrickletVoltageCurrentV2.Identity BrickletVoltageCurrentV2.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'i', 'z']
  • hardwareVersion – Type: int[], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]
  • firmwareVersion – Type: int[], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). The Raspberry Pi HAT (Zero) Brick is always at position 'i' and the Bricklet connected to an Isolator Bricklet is always as position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Listener Configuration Functions

void BrickletVoltageCurrentV2.setCurrentCallbackConfiguration(long period, boolean valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0

The period is the period with which the CurrentListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after the value has changed. If the value didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the listener with thresholds.

The option-parameter together with min/max sets a threshold for the CurrentListener listener.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the listener is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
BrickletVoltageCurrentV2.CurrentCallbackConfiguration BrickletVoltageCurrentV2.getCurrentCallbackConfiguration()
Return Object:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0

Returns the listener configuration as set by setCurrentCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.setVoltageCallbackConfiguration(long period, boolean valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0

The period is the period with which the VoltageListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after the value has changed. If the value didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the listener with thresholds.

The option-parameter together with min/max sets a threshold for the VoltageListener listener.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the listener is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
BrickletVoltageCurrentV2.VoltageCallbackConfiguration BrickletVoltageCurrentV2.getVoltageCallbackConfiguration()
Return Object:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0

Returns the listener configuration as set by setVoltageCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.setPowerCallbackConfiguration(long period, boolean valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0

The period is the period with which the PowerListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after the value has changed. If the value didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the listener with thresholds.

The option-parameter together with min/max sets a threshold for the PowerListener listener.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the listener is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
BrickletVoltageCurrentV2.PowerCallbackConfiguration BrickletVoltageCurrentV2.getPowerCallbackConfiguration()
Return Object:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0

Returns the listener configuration as set by setPowerCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'

Listeners

Listeners can be registered to receive time critical or recurring data from the device. The registration is done with add*Listener() functions of the device object.

The parameter is a listener class object, for example:

device.addExampleListener(new BrickletVoltageCurrentV2.ExampleListener() {
    public void property(int value) {
        System.out.println("Value: " + value);
    }
});

The available listener classes with inherent methods to be overwritten are described below. It is possible to add several listeners and to remove them with the corresponding remove*Listener() function.

Note

Using listeners for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

class BrickletVoltageCurrentV2.CurrentListener()

This listener can be added with the addCurrentListener() function. An added listener can be removed with the removeCurrentListener() function.

void current(int current)
Parameters:
  • current – Type: int, Unit: 1 mA, Range: [-20000 to 20000]

This listener is triggered periodically according to the configuration set by setCurrentCallbackConfiguration().

The parameter is the same as getCurrent().

class BrickletVoltageCurrentV2.VoltageListener()

This listener can be added with the addVoltageListener() function. An added listener can be removed with the removeVoltageListener() function.

void voltage(int voltage)
Parameters:
  • voltage – Type: int, Unit: 1 mV, Range: [0 to 36000]

This listener is triggered periodically according to the configuration set by setVoltageCallbackConfiguration().

The parameter is the same as getVoltage().

class BrickletVoltageCurrentV2.PowerListener()

This listener can be added with the addPowerListener() function. An added listener can be removed with the removePowerListener() function.

void power(int power)
Parameters:
  • power – Type: int, Unit: 1 mW, Range: [0 to 720000]

This listener is triggered periodically according to the configuration set by setPowerCallbackConfiguration().

The parameter is the same as getPower().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

int[] BrickletVoltageCurrentV2.getAPIVersion()
Return Object:
  • apiVersion – Type: int[], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletVoltageCurrentV2.getResponseExpected(int functionId)
Parameters:
  • functionId – Type: int, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For listener configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletVoltageCurrentV2.FUNCTION_SET_CURRENT_CALLBACK_CONFIGURATION = 2
  • BrickletVoltageCurrentV2.FUNCTION_SET_VOLTAGE_CALLBACK_CONFIGURATION = 6
  • BrickletVoltageCurrentV2.FUNCTION_SET_POWER_CALLBACK_CONFIGURATION = 10
  • BrickletVoltageCurrentV2.FUNCTION_SET_CONFIGURATION = 13
  • BrickletVoltageCurrentV2.FUNCTION_SET_CALIBRATION = 15
  • BrickletVoltageCurrentV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletVoltageCurrentV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletVoltageCurrentV2.FUNCTION_RESET = 243
  • BrickletVoltageCurrentV2.FUNCTION_WRITE_UID = 248
void BrickletVoltageCurrentV2.setResponseExpected(int functionId, boolean responseExpected)
Parameters:
  • functionId – Type: int, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and listener configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletVoltageCurrentV2.FUNCTION_SET_CURRENT_CALLBACK_CONFIGURATION = 2
  • BrickletVoltageCurrentV2.FUNCTION_SET_VOLTAGE_CALLBACK_CONFIGURATION = 6
  • BrickletVoltageCurrentV2.FUNCTION_SET_POWER_CALLBACK_CONFIGURATION = 10
  • BrickletVoltageCurrentV2.FUNCTION_SET_CONFIGURATION = 13
  • BrickletVoltageCurrentV2.FUNCTION_SET_CALIBRATION = 15
  • BrickletVoltageCurrentV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletVoltageCurrentV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletVoltageCurrentV2.FUNCTION_RESET = 243
  • BrickletVoltageCurrentV2.FUNCTION_WRITE_UID = 248
void BrickletVoltageCurrentV2.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and listener configuration functions of this device at once.

Constants

int BrickletVoltageCurrentV2.DEVICE_IDENTIFIER

This constant is used to identify a Voltage/Current Bricklet 2.0.

The getIdentity() function and the IPConnection.EnumerateListener listener of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickletVoltageCurrentV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Voltage/Current Bricklet 2.0.