Java - CO2 Bricklet 2.0

This is the description of the Java API bindings for the CO2 Bricklet 2.0. General information and technical specifications for the CO2 Bricklet 2.0 are summarized in its hardware description.

An installation guide for the Java API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletCO2V2;
import com.tinkerforge.BrickletCO2V2.AllValues;

public class ExampleSimple {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your CO2 Bricklet 2.0
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletCO2V2 co2 = new BrickletCO2V2(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current all values
        AllValues allValues = co2.getAllValues(); // Can throw com.tinkerforge.TimeoutException

        System.out.println("CO2 Concentration: " + allValues.co2Concentration + " ppm");
        System.out.println("Temperature: " + allValues.temperature/100.0 + " °C");
        System.out.println("Humidity: " + allValues.humidity/100.0 + " %RH");

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Callback

Download (ExampleCallback.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletCO2V2;

public class ExampleCallback {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your CO2 Bricklet 2.0
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletCO2V2 co2 = new BrickletCO2V2(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Add all values listener
        co2.addAllValuesListener(new BrickletCO2V2.AllValuesListener() {
            public void allValues(int co2Concentration, int temperature, int humidity) {
                System.out.println("CO2 Concentration: " + co2Concentration + " ppm");
                System.out.println("Temperature: " + temperature/100.0 + " °C");
                System.out.println("Humidity: " + humidity/100.0 + " %RH");
                System.out.println("");
            }
        });

        // Set period for all values callback to 1s (1000ms)
        co2.setAllValuesCallbackConfiguration(1000, false);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

API

Generally, every method of the Java bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletCO2V2(String uid, IPConnection ipcon)

Creates an object with the unique device ID uid:

BrickletCO2V2 co2V2 = new BrickletCO2V2("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected (see examples above).

BrickletCO2V2.AllValues BrickletCO2V2.getAllValues()

Returns all values measured by the CO2 Bricklet 2.0. The values are CO2 concentration (in ppm), temperature (in 0.01 °C) and humidity (in 0.01 %RH).

If you want to get the values periodically, it is recommended to use the AllValuesListener listener. You can set the listener configuration with setAllValuesCallbackConfiguration().

The returned object has the public member variables int co2Concentration, int temperature and int humidity.

void BrickletCO2V2.setAirPressure(int airPressure)

The CO2 concentration (among other things) depends on the ambient air pressure.

To increase the accuracy of the CO2 Bricklet 2.0 you can set the current air pressure. You use the Barometer Bricklet 2.0 or the Air Quality Bricklet to get the current air pressure.

The expected unit of the ambient air pressure value is mbar.

By default air pressure compensation is disabled. Once you set a value it will be used for compensation. You can turn the compensation off again by setting the value to 0.

It is sufficient to update the value every few minutes.

int BrickletCO2V2.getAirPressure()

Returns the ambient air pressure as set by setAirPressure().

void BrickletCO2V2.setTemperatureOffset(int offset)

Sets a temperature offset with resolution 1/100°C. A offset of 10 will decrease the measured temperature by 0.1°C.

If you install this Bricklet into an enclosure and you want to measure the ambient temperature, you may have to decrease the measured temperature by some value to compensate for the error because of the heating inside of the enclosure.

We recommend that you leave the parts in the enclosure running for at least 24 hours such that a temperature equilibrium can be reached. After that you can measure the temperature directly outside of enclosure and set the difference as offset.

This temperature offset is used to calculate the relative humidity and CO2 concentration. In case the Bricklet is installed in an enclosure, we recommend to measure and set the temperature offset to improve the accuracy of the measurements.

It is sufficient to set the temperature offset once. The offset is saved in non-volatile memory and is applied again after a power loss.

int BrickletCO2V2.getTemperatureOffset()

Returns the temperature offset as set by setTemperatureOffset().

int BrickletCO2V2.getCO2Concentration()

Returns CO2 concentration in ppm.

If you want to get the value periodically, it is recommended to use the CO2ConcentrationListener listener. You can set the listener configuration with setCO2ConcentrationCallbackConfiguration().

int BrickletCO2V2.getTemperature()

Returns temperature in steps of 0.01 °C.

If you want to get the value periodically, it is recommended to use the TemperatureListener listener. You can set the listener configuration with setTemperatureCallbackConfiguration().

int BrickletCO2V2.getHumidity()

Returns relative humidity in steps of 0.01 %RH.

If you want to get the value periodically, it is recommended to use the HumidityListener listener. You can set the listener configuration with setHumidityCallbackConfiguration().

Advanced Functions

int[] BrickletCO2V2.getAPIVersion()

Returns the version of the API definition (major, minor, revision) implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletCO2V2.getResponseExpected(int functionId)

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For listener configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

  • BrickletCO2V2.FUNCTION_SET_AIR_PRESSURE = 2
  • BrickletCO2V2.FUNCTION_SET_TEMPERATURE_OFFSET = 4
  • BrickletCO2V2.FUNCTION_SET_ALL_VALUES_CALLBACK_CONFIGURATION = 6
  • BrickletCO2V2.FUNCTION_SET_CO2_CONCENTRATION_CALLBACK_CONFIGURATION = 10
  • BrickletCO2V2.FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 14
  • BrickletCO2V2.FUNCTION_SET_HUMIDITY_CALLBACK_CONFIGURATION = 18
  • BrickletCO2V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletCO2V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletCO2V2.FUNCTION_RESET = 243
  • BrickletCO2V2.FUNCTION_WRITE_UID = 248
void BrickletCO2V2.setResponseExpected(int functionId, boolean responseExpected)

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and listener configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

  • BrickletCO2V2.FUNCTION_SET_AIR_PRESSURE = 2
  • BrickletCO2V2.FUNCTION_SET_TEMPERATURE_OFFSET = 4
  • BrickletCO2V2.FUNCTION_SET_ALL_VALUES_CALLBACK_CONFIGURATION = 6
  • BrickletCO2V2.FUNCTION_SET_CO2_CONCENTRATION_CALLBACK_CONFIGURATION = 10
  • BrickletCO2V2.FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 14
  • BrickletCO2V2.FUNCTION_SET_HUMIDITY_CALLBACK_CONFIGURATION = 18
  • BrickletCO2V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletCO2V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletCO2V2.FUNCTION_RESET = 243
  • BrickletCO2V2.FUNCTION_WRITE_UID = 248
void BrickletCO2V2.setResponseExpectedAll(boolean responseExpected)

Changes the response expected flag for all setter and listener configuration functions of this device at once.

BrickletCO2V2.SPITFPErrorCount BrickletCO2V2.getSPITFPErrorCount()

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

The returned object has the public member variables long errorCountAckChecksum, long errorCountMessageChecksum, long errorCountFrame and long errorCountOverflow.

int BrickletCO2V2.setBootloaderMode(int mode)

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
  • BrickletCO2V2.BOOTLOADER_STATUS_OK = 0
  • BrickletCO2V2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletCO2V2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletCO2V2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletCO2V2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletCO2V2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
int BrickletCO2V2.getBootloaderMode()

Returns the current bootloader mode, see setBootloaderMode().

The following constants are available for this function:

  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
void BrickletCO2V2.setWriteFirmwarePointer(long pointer)

Sets the firmware pointer for writeFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int BrickletCO2V2.writeFirmware(int[] data)

Writes 64 Bytes of firmware at the position as written by setWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

void BrickletCO2V2.setStatusLEDConfig(int config)

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

  • BrickletCO2V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletCO2V2.STATUS_LED_CONFIG_ON = 1
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
int BrickletCO2V2.getStatusLEDConfig()

Returns the configuration as set by setStatusLEDConfig()

The following constants are available for this function:

  • BrickletCO2V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletCO2V2.STATUS_LED_CONFIG_ON = 1
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
int BrickletCO2V2.getChipTemperature()

Returns the temperature in °C as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

void BrickletCO2V2.reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

void BrickletCO2V2.writeUID(long uid)

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

long BrickletCO2V2.readUID()

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

BrickletCO2V2.Identity BrickletCO2V2.getIdentity()

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c' or 'd'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

The returned object has the public member variables String uid, String connectedUid, char position, int[] hardwareVersion, int[] firmwareVersion and int deviceIdentifier.

Listener Configuration Functions

void BrickletCO2V2.setAllValuesCallbackConfiguration(long period, boolean valueHasToChange)

The period in ms is the period with which the AllValuesListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after at least one of the values has changed. If the values didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

The default value is (0, false).

BrickletCO2V2.AllValuesCallbackConfiguration BrickletCO2V2.getAllValuesCallbackConfiguration()

Returns the listener configuration as set by setAllValuesCallbackConfiguration().

The returned object has the public member variables long period and boolean valueHasToChange.

void BrickletCO2V2.setCO2ConcentrationCallbackConfiguration(long period, boolean valueHasToChange, char option, int min, int max)

The period in ms is the period with which the CO2ConcentrationListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after the value has changed. If the value didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the listener with thresholds.

The option-parameter together with min/max sets a threshold for the CO2ConcentrationListener listener.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the listener is triggered with the fixed period.

The default value is (0, false, 'x', 0, 0).

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
BrickletCO2V2.CO2ConcentrationCallbackConfiguration BrickletCO2V2.getCO2ConcentrationCallbackConfiguration()

Returns the listener configuration as set by setCO2ConcentrationCallbackConfiguration().

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'

The returned object has the public member variables long period, boolean valueHasToChange, char option, int min and int max.

void BrickletCO2V2.setTemperatureCallbackConfiguration(long period, boolean valueHasToChange, char option, int min, int max)

The period in ms is the period with which the TemperatureListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after the value has changed. If the value didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the listener with thresholds.

The option-parameter together with min/max sets a threshold for the TemperatureListener listener.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the listener is triggered with the fixed period.

The default value is (0, false, 'x', 0, 0).

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
BrickletCO2V2.TemperatureCallbackConfiguration BrickletCO2V2.getTemperatureCallbackConfiguration()

Returns the listener configuration as set by setTemperatureCallbackConfiguration().

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'

The returned object has the public member variables long period, boolean valueHasToChange, char option, int min and int max.

void BrickletCO2V2.setHumidityCallbackConfiguration(long period, boolean valueHasToChange, char option, int min, int max)

The period in ms is the period with which the HumidityListener listener is triggered periodically. A value of 0 turns the listener off.

If the value has to change-parameter is set to true, the listener is only triggered after the value has changed. If the value didn't change within the period, the listener is triggered immediately on change.

If it is set to false, the listener is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the listener with thresholds.

The option-parameter together with min/max sets a threshold for the HumidityListener listener.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the listener is triggered with the fixed period.

The default value is (0, false, 'x', 0, 0).

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
BrickletCO2V2.HumidityCallbackConfiguration BrickletCO2V2.getHumidityCallbackConfiguration()

Returns the listener configuration as set by setHumidityCallbackConfiguration().

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'

The returned object has the public member variables long period, boolean valueHasToChange, char option, int min and int max.

Listeners

Listeners can be registered to receive time critical or recurring data from the device. The registration is done with add*Listener() functions of the device object.

The parameter is a listener class object, for example:

device.addExampleListener(new BrickletCO2V2.ExampleListener() {
    public void property(int value) {
        System.out.println("Value: " + value);
    }
});

The available listener classes with inherent methods to be overwritten are described below. It is possible to add several listeners and to remove them with the corresponding remove*Listener() function.

Note

Using listeners for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

class BrickletCO2V2.AllValuesListener()

This listener can be added with the addAllValuesListener() function. An added listener can be removed with the removeAllValuesListener() function.

void allValues(int co2Concentration, int temperature, int humidity)

This listener is triggered periodically according to the configuration set by setAllValuesCallbackConfiguration().

The parameters are the same as getAllValues().

class BrickletCO2V2.CO2ConcentrationListener()

This listener can be added with the addCO2ConcentrationListener() function. An added listener can be removed with the removeCO2ConcentrationListener() function.

void co2Concentration(int co2Concentration)

This listener is triggered periodically according to the configuration set by setCO2ConcentrationCallbackConfiguration().

The parameter is the same as getCO2Concentration().

class BrickletCO2V2.TemperatureListener()

This listener can be added with the addTemperatureListener() function. An added listener can be removed with the removeTemperatureListener() function.

void temperature(int temperature)

This listener is triggered periodically according to the configuration set by setTemperatureCallbackConfiguration().

The parameter is the same as getTemperature().

class BrickletCO2V2.HumidityListener()

This listener can be added with the addHumidityListener() function. An added listener can be removed with the removeHumidityListener() function.

void humidity(int humidity)

This listener is triggered periodically according to the configuration set by setHumidityCallbackConfiguration().

The parameter is the same as getHumidity().

Constants

static final int BrickletCO2V2.DEVICE_IDENTIFIER

This constant is used to identify a CO2 Bricklet 2.0.

The getIdentity() function and the IPConnection.EnumerateListener listener of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

static final String BrickletCO2V2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a CO2 Bricklet 2.0.