LabVIEW - IO-4 Bricklet 2.0

This is the description of the LabVIEW API bindings for the IO-4 Bricklet 2.0. General information and technical specifications for the IO-4 Bricklet 2.0 are summarized in its hardware description.

An installation guide for the LabVIEW API bindings is part of their general description.

API

Generally, every function of the LabVIEW bindings that outputs a value can report a Tinkerforge.TimeoutException. This error gets reported if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

Basic Functions

BrickletIO4V2(uid, ipcon) → io4V2
Input:
  • uid – Type: String
  • ipcon – Type: .NET Refnum (IPConnection)
Output:
  • io4V2 – Type: .NET Refnum (BrickletIO4V2)

Creates an object with the unique device ID uid. This object can then be used after the IP Connection is connected.

BrickletIO4V2.SetValue(value)
Input:
  • value – Type: Boolean[4]

Sets the output value of all four channels. A value of true or false outputs logic 1 or logic 0 respectively on the corresponding channel.

Use SetSelectedValue() to change only one output channel state.

For example: (True, True, False, False) will turn the channels 0-1 high and the channels 2-3 low.

All running monoflop timers and PWMs will be aborted if this function is called.

Note

This function does nothing for channels that are configured as input. Pull-up resistors can be switched on with SetConfiguration().

BrickletIO4V2.GetValue() → value
Output:
  • value – Type: Boolean[4]

Returns the logic levels that are currently measured on the channels. This function works if the channel is configured as input as well as if it is configured as output.

BrickletIO4V2.SetSelectedValue(channel, value)
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • value – Type: Boolean

Sets the output value of a specific channel without affecting the other channels.

A running monoflop timer or PWM for the specific channel will be aborted if this function is called.

Note

This function does nothing for channels that are configured as input. Pull-up resistors can be switched on with SetConfiguration().

BrickletIO4V2.SetConfiguration(channel, direction, value)
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • direction – Type: Char, Range: See constants, Default: "i"
  • value – Type: Boolean, Default: T

Configures the value and direction of a specific channel. Possible directions are 'i' and 'o' for input and output.

If the direction is configured as output, the value is either high or low (set as true or false).

If the direction is configured as input, the value is either pull-up or default (set as true or false).

For example:

  • (0, 'i', true) will set channel 0 as input pull-up.
  • (1, 'i', false) will set channel 1 as input default (floating if nothing is connected).
  • (2, 'o', true) will set channel 2 as output high.
  • (3, 'o', false) will set channel 3 as output low.

A running monoflop timer or PWM for the specific channel will be aborted if this function is called.

The following constants are available for this function:

For direction:

  • BrickletIO4V2.DIRECTION_IN = "i"
  • BrickletIO4V2.DIRECTION_OUT = "o"
BrickletIO4V2.GetConfiguration(channel) → direction, value
Input:
  • channel – Type: Byte, Range: [0 to 3]
Output:
  • direction – Type: Char, Range: See constants, Default: "i"
  • value – Type: Boolean, Default: T

Returns the channel configuration as set by SetConfiguration().

The following constants are available for this function:

For direction:

  • BrickletIO4V2.DIRECTION_IN = "i"
  • BrickletIO4V2.DIRECTION_OUT = "o"

Advanced Functions

BrickletIO4V2.SetMonoflop(channel, value, time)
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • value – Type: Boolean
  • time – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1]

The first parameter is the desired state of the channel (true means output high and false means output low). The second parameter indicates the time that the channel should hold the state.

If this function is called with the parameters (true, 1500): The channel will turn on and in 1.5s it will turn off again.

A PWM for the selected channel will be aborted if this function is called.

A monoflop can be used as a failsafe mechanism. For example: Lets assume you have a RS485 bus and a IO-4 Bricklet 2.0 is connected to one of the slave stacks. You can now call this function every second, with a time parameter of two seconds. The channel will be high all the time. If now the RS485 connection is lost, the channel will turn low in at most two seconds.

BrickletIO4V2.GetMonoflop(channel) → value, time, timeRemaining
Input:
  • channel – Type: Byte, Range: [0 to 3]
Output:
  • value – Type: Boolean
  • time – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1]
  • timeRemaining – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1]

Returns (for the given channel) the current value and the time as set by SetMonoflop() as well as the remaining time until the value flips.

If the timer is not running currently, the remaining time will be returned as 0.

BrickletIO4V2.GetEdgeCount(channel, resetCounter) → count
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • resetCounter – Type: Boolean
Output:
  • count – Type: Int64, Range: [0 to 232 - 1]

Returns the current value of the edge counter for the selected channel. You can configure the edges that are counted with SetEdgeCountConfiguration().

If you set the reset counter to true, the count is set back to 0 directly after it is read.

Note

Calling this function is only allowed for channels configured as input.

BrickletIO4V2.SetEdgeCountConfiguration(channel, edgeType, debounce)
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • edgeType – Type: Byte, Range: See constants, Default: 0
  • debounce – Type: Byte, Unit: 1 ms, Range: [0 to 255], Default: 100

Configures the edge counter for a specific channel.

The edge type parameter configures if rising edges, falling edges or both are counted if the channel is configured for input. Possible edge types are:

  • 0 = rising
  • 1 = falling
  • 2 = both

Configuring an edge counter resets its value to 0.

If you don't know what any of this means, just leave it at default. The default configuration is very likely OK for you.

Note

Calling this function is only allowed for channels configured as input.

The following constants are available for this function:

For edgeType:

  • BrickletIO4V2.EDGE_TYPE_RISING = 0
  • BrickletIO4V2.EDGE_TYPE_FALLING = 1
  • BrickletIO4V2.EDGE_TYPE_BOTH = 2
BrickletIO4V2.GetEdgeCountConfiguration(channel) → edgeType, debounce
Input:
  • channel – Type: Byte, Range: [0 to 3]
Output:
  • edgeType – Type: Byte, Range: See constants, Default: 0
  • debounce – Type: Byte, Unit: 1 ms, Range: [0 to 255], Default: 100

Returns the edge type and debounce time for the selected channel as set by SetEdgeCountConfiguration().

Note

Calling this function is only allowed for channels configured as input.

The following constants are available for this function:

For edgeType:

  • BrickletIO4V2.EDGE_TYPE_RISING = 0
  • BrickletIO4V2.EDGE_TYPE_FALLING = 1
  • BrickletIO4V2.EDGE_TYPE_BOTH = 2
BrickletIO4V2.SetPWMConfiguration(channel, frequency, dutyCycle)
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • frequency – Type: Int64, Unit: 1/10 Hz, Range: [0 to 320000000], Default: 0
  • dutyCycle – Type: Int32, Unit: 1/100 %, Range: [0 to 10000], Default: 0

Activates a PWM for the given channel.

You need to set the channel to output before you call this function, otherwise it will report an invalid parameter error. To turn the PWM off again, you can set the frequency to 0 or any other function that changes a value of the channel (e.g. SetSelectedValue()).

A running monoflop timer for the given channel will be aborted if this function is called.

BrickletIO4V2.GetPWMConfiguration(channel) → frequency, dutyCycle
Input:
  • channel – Type: Byte, Range: [0 to 3]
Output:
  • frequency – Type: Int64, Unit: 1/10 Hz, Range: [0 to 320000000], Default: 0
  • dutyCycle – Type: Int32, Unit: 1/100 %, Range: [0 to 10000], Default: 0

Returns the PWM configuration as set by SetPWMConfiguration().

BrickletIO4V2.GetSPITFPErrorCount() → errorCountAckChecksum, errorCountMessageChecksum, errorCountFrame, errorCountOverflow
Output:
  • errorCountAckChecksum – Type: Int64, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Int64, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Int64, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Int64, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

BrickletIO4V2.SetStatusLEDConfig(config)
Input:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletIO4V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletIO4V2.STATUS_LED_CONFIG_ON = 1
  • BrickletIO4V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIO4V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletIO4V2.GetStatusLEDConfig() → config
Output:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletIO4V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletIO4V2.STATUS_LED_CONFIG_ON = 1
  • BrickletIO4V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIO4V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletIO4V2.GetChipTemperature() → temperature
Output:
  • temperature – Type: Int16, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

BrickletIO4V2.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickletIO4V2.GetIdentity() → uid, connectedUid, position, hardwareVersion, firmwareVersion, deviceIdentifier
Output:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: Char, Range: ["a" to "h", "z"]
  • hardwareVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • firmwareVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • deviceIdentifier – Type: Int32, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

BrickletIO4V2.SetInputValueCallbackConfiguration(channel, period, valueHasToChange)
Input:
  • channel – Type: Byte, Range: [0 to 3]
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: F

This callback can be configured per channel.

The period is the period with which the InputValueCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIO4V2.GetInputValueCallbackConfiguration(channel) → period, valueHasToChange
Input:
  • channel – Type: Byte, Range: [0 to 3]
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: F

Returns the callback configuration for the given channel as set by SetInputValueCallbackConfiguration().

BrickletIO4V2.SetAllInputValueCallbackConfiguration(period, valueHasToChange)
Input:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: F

The period is the period with which the AllInputValueCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIO4V2.GetAllInputValueCallbackConfiguration() → period, valueHasToChange
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: F

Returns the callback configuration as set by SetAllInputValueCallbackConfiguration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a function to a callback property of the device object. The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

event BrickletIO4V2.InputValueCallback → sender, channel, changed, value
Callback Output:
  • sender – Type: .NET Refnum (BrickletIO4V2)
  • channel – Type: Byte, Range: [0 to 3]
  • changed – Type: Boolean
  • value – Type: Boolean

This callback is triggered periodically according to the configuration set by SetInputValueCallbackConfiguration().

The parameters are the channel, a value-changed indicator and the actual value for the channel. The changed parameter is true if the value has changed since the last callback.

event BrickletIO4V2.AllInputValueCallback → sender, changed, value
Callback Output:
  • sender – Type: .NET Refnum (BrickletIO4V2)
  • changed – Type: Boolean[4]
  • value – Type: Boolean[4]

This callback is triggered periodically according to the configuration set by SetAllInputValueCallbackConfiguration().

The parameters are the same as GetValue(). Additional the changed parameter is true if the value has changed since the last callback.

event BrickletIO4V2.MonoflopDoneCallback → sender, channel, value
Callback Output:
  • sender – Type: .NET Refnum (BrickletIO4V2)
  • channel – Type: Byte, Range: [0 to 3]
  • value – Type: Boolean

This callback is triggered whenever a monoflop timer reaches 0. The parameters contain the channel and the current value of the channel (the value after the monoflop).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletIO4V2.GetAPIVersion() → apiVersion
Output:
  • apiVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletIO4V2.GetResponseExpected(functionId) → responseExpected
Input:
  • functionId – Type: Byte, Range: See constants
Output:
  • responseExpected – Type: Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletIO4V2.FUNCTION_SET_VALUE = 1
  • BrickletIO4V2.FUNCTION_SET_SELECTED_VALUE = 3
  • BrickletIO4V2.FUNCTION_SET_CONFIGURATION = 4
  • BrickletIO4V2.FUNCTION_SET_INPUT_VALUE_CALLBACK_CONFIGURATION = 6
  • BrickletIO4V2.FUNCTION_SET_ALL_INPUT_VALUE_CALLBACK_CONFIGURATION = 8
  • BrickletIO4V2.FUNCTION_SET_MONOFLOP = 10
  • BrickletIO4V2.FUNCTION_SET_EDGE_COUNT_CONFIGURATION = 13
  • BrickletIO4V2.FUNCTION_SET_PWM_CONFIGURATION = 15
  • BrickletIO4V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIO4V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIO4V2.FUNCTION_RESET = 243
  • BrickletIO4V2.FUNCTION_WRITE_UID = 248
BrickletIO4V2.SetResponseExpected(functionId, responseExpected)
Input:
  • functionId – Type: Byte, Range: See constants
  • responseExpected – Type: Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletIO4V2.FUNCTION_SET_VALUE = 1
  • BrickletIO4V2.FUNCTION_SET_SELECTED_VALUE = 3
  • BrickletIO4V2.FUNCTION_SET_CONFIGURATION = 4
  • BrickletIO4V2.FUNCTION_SET_INPUT_VALUE_CALLBACK_CONFIGURATION = 6
  • BrickletIO4V2.FUNCTION_SET_ALL_INPUT_VALUE_CALLBACK_CONFIGURATION = 8
  • BrickletIO4V2.FUNCTION_SET_MONOFLOP = 10
  • BrickletIO4V2.FUNCTION_SET_EDGE_COUNT_CONFIGURATION = 13
  • BrickletIO4V2.FUNCTION_SET_PWM_CONFIGURATION = 15
  • BrickletIO4V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIO4V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIO4V2.FUNCTION_RESET = 243
  • BrickletIO4V2.FUNCTION_WRITE_UID = 248
BrickletIO4V2.SetResponseExpectedAll(responseExpected)
Input:
  • responseExpected – Type: Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

BrickletIO4V2.SetBootloaderMode(mode) → status
Input:
  • mode – Type: Byte, Range: See constants
Output:
  • status – Type: Byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletIO4V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIO4V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIO4V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIO4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIO4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletIO4V2.BOOTLOADER_STATUS_OK = 0
  • BrickletIO4V2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletIO4V2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletIO4V2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletIO4V2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletIO4V2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
BrickletIO4V2.GetBootloaderMode() → mode
Output:
  • mode – Type: Byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletIO4V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIO4V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIO4V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIO4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIO4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
BrickletIO4V2.SetWriteFirmwarePointer(pointer)
Input:
  • pointer – Type: Int64, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletIO4V2.WriteFirmware(data) → status
Input:
  • data – Type: Byte[64], Range: [0 to 255]
Output:
  • status – Type: Byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletIO4V2.WriteUID(uid)
Input:
  • uid – Type: Int64, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

BrickletIO4V2.ReadUID() → uid
Output:
  • uid – Type: Int64, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

BrickletIO4V2.DEVICE_IDENTIFIER

This constant is used to identify a IO-4 Bricklet 2.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

BrickletIO4V2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a IO-4 Bricklet 2.0.