C# - Industrial Digital Out 4 Bricklet 2.0

This is the description of the C# API bindings for the Industrial Digital Out 4 Bricklet 2.0. General information and technical specifications for the Industrial Digital Out 4 Bricklet 2.0 are summarized in its hardware description.

An installation guide for the C# API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
using System;
using System.Threading;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Industrial Digital Out 4 Bricklet 2.0

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletIndustrialDigitalOut4V2 ido4 =
          new BrickletIndustrialDigitalOut4V2(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Set channels alternating high/low 10 times with 100 ms delay
        for(int i = 0; i < 10; i++)
        {
            Thread.Sleep(100);
            ido4.SetValue(new bool[]{true, false, false, false});
            Thread.Sleep(100);
            ido4.SetValue(new bool[]{false, true, false, false});
            Thread.Sleep(100);
            ido4.SetValue(new bool[]{false, false, true, false});
            Thread.Sleep(100);
            ido4.SetValue(new bool[]{false, false, false, true});
        }

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

API

Generally, every method of the C# bindings that returns a value can throw a Tinkerforge.TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Since C# does not support multiple return values directly, we use the out keyword to return multiple values from a method.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

All methods listed below are thread-safe.

Basic Functions

public class BrickletIndustrialDigitalOut4V2(String uid, IPConnection ipcon)

Creates an object with the unique device ID uid:

BrickletIndustrialDigitalOut4V2 industrialDigitalOut4V2 = new BrickletIndustrialDigitalOut4V2("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected (see examples above).

public void SetValue(bool[] value)

Sets the output value of all four channels. A value of true or false outputs logic 1 or logic 0 respectively on the corresponding channel.

Use SetSelectedValue() to change only one output channel state.

For example: (True, True, False, False) will turn the channels 0-1 high and the channels 2-3 low.

public bool[] GetValue()

Returns the logic levels that are currently output on the channels.

public void SetSelectedValue(byte channel, bool value)

Sets the output value of a specific channel without affecting the other channels.

public void SetChannelLEDConfig(byte channel, byte config)

Each channel has a corresponding LED. You can turn the LED off, on or show a heartbeat. You can also set the LED to "Channel Status". In this mode the LED is on if the channel is high and off otherwise.

By default all channel LEDs are configured as "Channel Status".

The following constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_OFF = 0
  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_ON = 1
  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_SHOW_CHANNEL_STATUS = 3
public byte GetChannelLEDConfig(byte channel)

Returns the channel LED configuration as set by SetChannelLEDConfig()

The following constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_OFF = 0
  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_ON = 1
  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIndustrialDigitalOut4V2.CHANNEL_LED_CONFIG_SHOW_CHANNEL_STATUS = 3

Advanced Functions

public void SetMonoflop(byte channel, bool value, long time)

The first parameter is the desired state of the channel (true means output high and false means output low). The second parameter indicates the time (in ms) that the channel should hold the state.

If this function is called with the parameters (true, 1500): The channel will turn on and in 1.5s it will turn off again.

A monoflop can be used as a failsafe mechanism. For example: Lets assume you have a RS485 bus and a IO-4 Bricklet is connected to one of the slave stacks. You can now call this function every second, with a time parameter of two seconds. The channel will be high all the time. If now the RS485 connection is lost, the channel will turn low in at most two seconds.

public void GetMonoflop(byte channel, out bool value, out long time, out long timeRemaining)

Returns (for the given channel) the current value and the time as set by SetMonoflop() as well as the remaining time until the value flips.

If the timer is not running currently, the remaining time will be returned as 0.

public void SetPWMConfiguration(byte channel, long frequency, int dutyCycle)

Activates a PWM for the given channel with the frequency given in 1/10Hz and the duty cycle given in 1/100%.

To turn the PWM off again, you can set the frequency to 0 or any other function that changes a value of the channel (e.g. SetSelectedValue()).

The maximum duty cycle value is 10000 (100%). The optocoupler of the Industrial Digital Out 4 Bricklet 2.0 has a rise time and fall time of 11.5us (each) at 24V. So the maximum useful frequency value is about 400000 (40kHz).

The default values are 0, 0.

public void GetPWMConfiguration(byte channel, out long frequency, out int dutyCycle)

Returns the PWM configuration as set by SetPWMConfiguration().

public byte[] GetAPIVersion()

Returns the version of the API definition (major, minor, revision) implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

public bool GetResponseExpected(byte functionId)

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

See SetResponseExpected() for the list of function ID constants available for this function.

public void SetResponseExpected(byte functionId, bool responseExpected)

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following function ID constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_VALUE = 1
  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_SELECTED_VALUE = 3
  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_MONOFLOP = 4
  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_CHANNEL_LED_CONFIG = 7
  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_PWM_CONFIGURATION = 9
  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIndustrialDigitalOut4V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIndustrialDigitalOut4V2.FUNCTION_RESET = 243
  • BrickletIndustrialDigitalOut4V2.FUNCTION_WRITE_UID = 248
public void SetResponseExpectedAll(bool responseExpected)

Changes the response expected flag for all setter and callback configuration functions of this device at once.

public void GetSPITFPErrorCount(out long errorCountAckChecksum, out long errorCountMessageChecksum, out long errorCountFrame, out long errorCountOverflow)

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

public byte SetBootloaderMode(byte mode)

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_STATUS_OK = 0
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
public byte GetBootloaderMode()

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIndustrialDigitalOut4V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
public void SetWriteFirmwarePointer(long pointer)

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

public byte WriteFirmware(byte[] data)

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

public void SetStatusLEDConfig(byte config)

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_ON = 1
  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
public byte GetStatusLEDConfig()

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_ON = 1
  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIndustrialDigitalOut4V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
public short GetChipTemperature()

Returns the temperature in °C as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

public void Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

public void WriteUID(long uid)

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

public long ReadUID()

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

public void GetIdentity(out string uid, out string connectedUid, out char position, out byte[] hardwareVersion, out byte[] firmwareVersion, out int deviceIdentifier)

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c' or 'd'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by appending your callback handler to the corresponding event:

void MyCallback(BrickletIndustrialDigitalOut4V2 sender, int value)
{
    System.Console.WriteLine("Value: " + value);
}

industrialDigitalOut4V2.ExampleCallback += MyCallback;

The available events are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

public event MonoflopDoneCallback(BrickletIndustrialDigitalOut4V2 sender, byte channel, bool value)

This callback is triggered whenever a monoflop timer reaches 0. The parameters contain the channel and the current value of the channel (the value after the monoflop).

Constants

public int DEVICE_IDENTIFIER

This constant is used to identify a Industrial Digital Out 4 Bricklet 2.0.

The GetIdentity() function and the EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

public string DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Industrial Digital Out 4 Bricklet 2.0.