C# - CO2 Bricklet 2.0

This is the description of the C# API bindings for the CO2 Bricklet 2.0. General information and technical specifications for the CO2 Bricklet 2.0 are summarized in its hardware description.

An installation guide for the C# API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your CO2 Bricklet 2.0

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletCO2V2 co2 = new BrickletCO2V2(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current all values
        int co2Concentration, humidity; short temperature;
        co2.GetAllValues(out co2Concentration, out temperature, out humidity);

        Console.WriteLine("CO2 Concentration: " + co2Concentration + " ppm");
        Console.WriteLine("Temperature: " + temperature/100.0 + " °C");
        Console.WriteLine("Humidity: " + humidity/100.0 + " %RH");

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

Callback

Download (ExampleCallback.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your CO2 Bricklet 2.0

    // Callback function for all values callback
    static void AllValuesCB(BrickletCO2V2 sender, int co2Concentration, short temperature,
                            int humidity)
    {
        Console.WriteLine("CO2 Concentration: " + co2Concentration + " ppm");
        Console.WriteLine("Temperature: " + temperature/100.0 + " °C");
        Console.WriteLine("Humidity: " + humidity/100.0 + " %RH");
        Console.WriteLine("");
    }

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletCO2V2 co2 = new BrickletCO2V2(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Register all values callback to function AllValuesCB
        co2.AllValuesCallback += AllValuesCB;

        // Set period for all values callback to 1s (1000ms)
        co2.SetAllValuesCallbackConfiguration(1000, false);

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

API

Generally, every method of the C# bindings that returns a value can throw a Tinkerforge.TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Since C# does not support multiple return values directly, we use the out keyword to return multiple values from a method.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

All methods listed below are thread-safe.

Basic Functions

public class BrickletCO2V2(String uid, IPConnection ipcon)

Creates an object with the unique device ID uid:

BrickletCO2V2 co2V2 = new BrickletCO2V2("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected (see examples above).

public void GetAllValues(out int co2Concentration, out short temperature, out int humidity)

Returns all values measured by the CO2 Bricklet 2.0. The values are CO2 concentration (in ppm), temperature (in 0.01 °C) and humidity (in 0.01 %RH).

If you want to get the values periodically, it is recommended to use the AllValuesCallback callback. You can set the callback configuration with SetAllValuesCallbackConfiguration().

public void SetAirPressure(int airPressure)

The CO2 concentration (among other things) depends on the ambient air pressure.

To increase the accuracy of the CO2 Bricklet 2.0 you can set the current air pressure. You use the Barometer Bricklet 2.0 or the Air Quality Bricklet to get the current air pressure.

The expected unit of the ambient air pressure value is mbar.

By default air pressure compensation is disabled. Once you set a value it will be used for compensation. You can turn the compensation off again by setting the value to 0.

It is sufficient to update the value every few minutes.

public int GetAirPressure()

Returns the ambient air pressure as set by SetAirPressure().

public void SetTemperatureOffset(int offset)

Sets a temperature offset with resolution 1/100°C. A offset of 10 will decrease the measured temperature by 0.1°C.

If you install this Bricklet into an enclosure and you want to measure the ambient temperature, you may have to decrease the measured temperature by some value to compensate for the error because of the heating inside of the enclosure.

We recommend that you leave the parts in the enclosure running for at least 24 hours such that a temperature equilibrium can be reached. After that you can measure the temperature directly outside of enclosure and set the difference as offset.

This temperature offset is used to calculate the relative humidity and CO2 concentration. In case the Bricklet is installed in an enclosure, we recommend to measure and set the temperature offset to improve the accuracy of the measurements.

It is sufficient to set the temperature offset once. The offset is saved in non-volatile memory and is applied again after a power loss.

public int GetTemperatureOffset()

Returns the temperature offset as set by SetTemperatureOffset().

public int GetCO2Concentration()

Returns CO2 concentration in ppm.

If you want to get the value periodically, it is recommended to use the CO2ConcentrationCallback callback. You can set the callback configuration with SetCO2ConcentrationCallbackConfiguration().

public short GetTemperature()

Returns temperature in steps of 0.01 °C.

If you want to get the value periodically, it is recommended to use the TemperatureCallback callback. You can set the callback configuration with SetTemperatureCallbackConfiguration().

public int GetHumidity()

Returns relative humidity in steps of 0.01 %RH.

If you want to get the value periodically, it is recommended to use the HumidityCallback callback. You can set the callback configuration with SetHumidityCallbackConfiguration().

Advanced Functions

public byte[] GetAPIVersion()

Returns the version of the API definition (major, minor, revision) implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

public bool GetResponseExpected(byte functionId)

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

See SetResponseExpected() for the list of function ID constants available for this function.

public void SetResponseExpected(byte functionId, bool responseExpected)

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is send and errors are silently ignored, because they cannot be detected.

The following function ID constants are available for this function:

  • BrickletCO2V2.FUNCTION_SET_AIR_PRESSURE = 2
  • BrickletCO2V2.FUNCTION_SET_TEMPERATURE_OFFSET = 4
  • BrickletCO2V2.FUNCTION_SET_ALL_VALUES_CALLBACK_CONFIGURATION = 6
  • BrickletCO2V2.FUNCTION_SET_CO2_CONCENTRATION_CALLBACK_CONFIGURATION = 10
  • BrickletCO2V2.FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 14
  • BrickletCO2V2.FUNCTION_SET_HUMIDITY_CALLBACK_CONFIGURATION = 18
  • BrickletCO2V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletCO2V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletCO2V2.FUNCTION_RESET = 243
  • BrickletCO2V2.FUNCTION_WRITE_UID = 248
public void SetResponseExpectedAll(bool responseExpected)

Changes the response expected flag for all setter and callback configuration functions of this device at once.

public void GetSPITFPErrorCount(out long errorCountAckChecksum, out long errorCountMessageChecksum, out long errorCountFrame, out long errorCountOverflow)

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

public byte SetBootloaderMode(byte mode)

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
  • BrickletCO2V2.BOOTLOADER_STATUS_OK = 0
  • BrickletCO2V2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletCO2V2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletCO2V2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletCO2V2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletCO2V2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
public byte GetBootloaderMode()

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletCO2V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletCO2V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
public void SetWriteFirmwarePointer(long pointer)

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

public byte WriteFirmware(byte[] data)

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

public void SetStatusLEDConfig(byte config)

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

  • BrickletCO2V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletCO2V2.STATUS_LED_CONFIG_ON = 1
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
public byte GetStatusLEDConfig()

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

  • BrickletCO2V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletCO2V2.STATUS_LED_CONFIG_ON = 1
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletCO2V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
public short GetChipTemperature()

Returns the temperature in °C as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

public void Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

public void WriteUID(long uid)

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

public long ReadUID()

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

public void GetIdentity(out string uid, out string connectedUid, out char position, out byte[] hardwareVersion, out byte[] firmwareVersion, out int deviceIdentifier)

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c' or 'd'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

public void SetAllValuesCallbackConfiguration(long period, bool valueHasToChange)

The period in ms is the period with which the AllValuesCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after at least one of the values has changed. If the values didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

The default value is (0, false).

public void GetAllValuesCallbackConfiguration(out long period, out bool valueHasToChange)

Returns the callback configuration as set by SetAllValuesCallbackConfiguration().

public void SetCO2ConcentrationCallbackConfiguration(long period, bool valueHasToChange, char option, int min, int max)

The period in ms is the period with which the CO2ConcentrationCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the CO2ConcentrationCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The default value is (0, false, 'x', 0, 0).

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
public void GetCO2ConcentrationCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out int min, out int max)

Returns the callback configuration as set by SetCO2ConcentrationCallbackConfiguration().

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
public void SetTemperatureCallbackConfiguration(long period, bool valueHasToChange, char option, short min, short max)

The period in ms is the period with which the TemperatureCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the TemperatureCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The default value is (0, false, 'x', 0, 0).

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
public void GetTemperatureCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out short min, out short max)

Returns the callback configuration as set by SetTemperatureCallbackConfiguration().

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
public void SetHumidityCallbackConfiguration(long period, bool valueHasToChange, char option, int min, int max)

The period in ms is the period with which the HumidityCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the HumidityCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The default value is (0, false, 'x', 0, 0).

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'
public void GetHumidityCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out int min, out int max)

Returns the callback configuration as set by SetHumidityCallbackConfiguration().

The following constants are available for this function:

  • BrickletCO2V2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletCO2V2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletCO2V2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletCO2V2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletCO2V2.THRESHOLD_OPTION_GREATER = '>'

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by appending your callback handler to the corresponding event:

void MyCallback(BrickletCO2V2 sender, int value)
{
    System.Console.WriteLine("Value: " + value);
}

co2V2.ExampleCallback += MyCallback;

The available events are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

public event AllValuesCallback(BrickletCO2V2 sender, int co2Concentration, short temperature, int humidity)

This callback is triggered periodically according to the configuration set by SetAllValuesCallbackConfiguration().

The parameters are the same as GetAllValues().

public event CO2ConcentrationCallback(BrickletCO2V2 sender, int co2Concentration)

This callback is triggered periodically according to the configuration set by SetCO2ConcentrationCallbackConfiguration().

The parameter is the same as GetCO2Concentration().

public event TemperatureCallback(BrickletCO2V2 sender, short temperature)

This callback is triggered periodically according to the configuration set by SetTemperatureCallbackConfiguration().

The parameter is the same as GetTemperature().

public event HumidityCallback(BrickletCO2V2 sender, int humidity)

This callback is triggered periodically according to the configuration set by SetHumidityCallbackConfiguration().

The parameter is the same as GetHumidity().

Constants

public int DEVICE_IDENTIFIER

This constant is used to identify a CO2 Bricklet 2.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

public string DEVICE_DISPLAY_NAME

This constant represents the human readable name of a CO2 Bricklet 2.0.