C# - Voltage/Current Bricklet 2.0

This is the description of the C# API bindings for the Voltage/Current Bricklet 2.0. General information and technical specifications for the Voltage/Current Bricklet 2.0 are summarized in its hardware description.

An installation guide for the C# API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Voltage/Current Bricklet 2.0

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletVoltageCurrentV2 vc =
          new BrickletVoltageCurrentV2(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current voltage
        int voltage = vc.GetVoltage();
        Console.WriteLine("Voltage: " + voltage/1000.0 + " V");

        // Get current current
        int current = vc.GetCurrent();
        Console.WriteLine("Current: " + current/1000.0 + " A");

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

Callback

Download (ExampleCallback.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Voltage/Current Bricklet 2.0

    // Callback function for current callback
    static void CurrentCB(BrickletVoltageCurrentV2 sender, int current)
    {
        Console.WriteLine("Current: " + current/1000.0 + " A");
    }

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletVoltageCurrentV2 vc =
          new BrickletVoltageCurrentV2(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Register current callback to function CurrentCB
        vc.CurrentCallback += CurrentCB;

        // Set period for current callback to 1s (1000ms) without a threshold
        vc.SetCurrentCallbackConfiguration(1000, false, 'x', 0, 0);

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

Threshold

Download (ExampleThreshold.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Voltage/Current Bricklet 2.0

    // Callback function for power callback
    static void PowerCB(BrickletVoltageCurrentV2 sender, int power)
    {
        Console.WriteLine("power: " + power/1000.0 + " W");
    }

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletVoltageCurrentV2 vc =
          new BrickletVoltageCurrentV2(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Register power callback to function PowerCB
        vc.PowerCallback += PowerCB;

        // Configure threshold for power "greater than 10 W"
        // with a debounce period of 1s (1000ms)
        vc.SetPowerCallbackConfiguration(1000, false, '>', 10*1000, 0);

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

API

Generally, every method of the C# bindings that returns a value can throw a Tinkerforge.TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Since C# does not support multiple return values directly, we use the out keyword to return multiple values from a method.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

All methods listed below are thread-safe.

Basic Functions

class BrickletVoltageCurrentV2(string uid, IPConnection ipcon)
Parameters:
  • uid – Type: string
  • ipcon – Type: IPConnection
Returns:
  • voltageCurrentV2 – Type: BrickletVoltageCurrentV2

Creates an object with the unique device ID uid:

BrickletVoltageCurrentV2 voltageCurrentV2 = new BrickletVoltageCurrentV2("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

int BrickletVoltageCurrentV2.GetCurrent()
Returns:
  • current – Type: int, Unit: 1 mA, Range: [-20000 to 20000]

Returns the current.

If you want to get the value periodically, it is recommended to use the CurrentCallback callback. You can set the callback configuration with SetCurrentCallbackConfiguration().

int BrickletVoltageCurrentV2.GetVoltage()
Returns:
  • voltage – Type: int, Unit: 1 mV, Range: [0 to 36000]

Returns the voltage.

If you want to get the value periodically, it is recommended to use the VoltageCallback callback. You can set the callback configuration with SetVoltageCallbackConfiguration().

int BrickletVoltageCurrentV2.GetPower()
Returns:
  • power – Type: int, Unit: 1 mW, Range: [0 to 720000]

Returns the power.

If you want to get the value periodically, it is recommended to use the PowerCallback callback. You can set the callback configuration with SetPowerCallbackConfiguration().

void BrickletVoltageCurrentV2.SetConfiguration(byte averaging, byte voltageConversionTime, byte currentConversionTime)
Parameters:
  • averaging – Type: byte, Range: See constants, Default: 3
  • voltageConversionTime – Type: byte, Range: See constants, Default: 4
  • currentConversionTime – Type: byte, Range: See constants, Default: 4

Sets the configuration of the Voltage/Current Bricklet 2.0. It is possible to configure number of averages as well as voltage and current conversion time.

The following constants are available for this function:

For averaging:

  • BrickletVoltageCurrentV2.AVERAGING_1 = 0
  • BrickletVoltageCurrentV2.AVERAGING_4 = 1
  • BrickletVoltageCurrentV2.AVERAGING_16 = 2
  • BrickletVoltageCurrentV2.AVERAGING_64 = 3
  • BrickletVoltageCurrentV2.AVERAGING_128 = 4
  • BrickletVoltageCurrentV2.AVERAGING_256 = 5
  • BrickletVoltageCurrentV2.AVERAGING_512 = 6
  • BrickletVoltageCurrentV2.AVERAGING_1024 = 7

For voltageConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7

For currentConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7
void BrickletVoltageCurrentV2.GetConfiguration(out byte averaging, out byte voltageConversionTime, out byte currentConversionTime)
Output Parameters:
  • averaging – Type: byte, Range: See constants, Default: 3
  • voltageConversionTime – Type: byte, Range: See constants, Default: 4
  • currentConversionTime – Type: byte, Range: See constants, Default: 4

Returns the configuration as set by SetConfiguration().

The following constants are available for this function:

For averaging:

  • BrickletVoltageCurrentV2.AVERAGING_1 = 0
  • BrickletVoltageCurrentV2.AVERAGING_4 = 1
  • BrickletVoltageCurrentV2.AVERAGING_16 = 2
  • BrickletVoltageCurrentV2.AVERAGING_64 = 3
  • BrickletVoltageCurrentV2.AVERAGING_128 = 4
  • BrickletVoltageCurrentV2.AVERAGING_256 = 5
  • BrickletVoltageCurrentV2.AVERAGING_512 = 6
  • BrickletVoltageCurrentV2.AVERAGING_1024 = 7

For voltageConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7

For currentConversionTime:

  • BrickletVoltageCurrentV2.CONVERSION_TIME_140US = 0
  • BrickletVoltageCurrentV2.CONVERSION_TIME_204US = 1
  • BrickletVoltageCurrentV2.CONVERSION_TIME_332US = 2
  • BrickletVoltageCurrentV2.CONVERSION_TIME_588US = 3
  • BrickletVoltageCurrentV2.CONVERSION_TIME_1_1MS = 4
  • BrickletVoltageCurrentV2.CONVERSION_TIME_2_116MS = 5
  • BrickletVoltageCurrentV2.CONVERSION_TIME_4_156MS = 6
  • BrickletVoltageCurrentV2.CONVERSION_TIME_8_244MS = 7

Advanced Functions

void BrickletVoltageCurrentV2.SetCalibration(int voltageMultiplier, int voltageDivisor, int currentMultiplier, int currentDivisor)
Parameters:
  • voltageMultiplier – Type: int, Range: [0 to 216 - 1]
  • voltageDivisor – Type: int, Range: [0 to 216 - 1]
  • currentMultiplier – Type: int, Range: [0 to 216 - 1]
  • currentDivisor – Type: int, Range: [0 to 216 - 1]

Since the ADC and the shunt resistor used for the measurements are not perfect they need to be calibrated by a multiplier and a divisor if a very precise reading is needed.

For example, if you are expecting a current of 1000mA and you are measuring 1023mA, you can calibrate the Voltage/Current Bricklet by setting the current multiplier to 1000 and the divisor to 1023. The same applies for the voltage.

The calibration will be saved on the EEPROM of the Voltage/Current Bricklet and only needs to be done once.

void BrickletVoltageCurrentV2.GetCalibration(out int voltageMultiplier, out int voltageDivisor, out int currentMultiplier, out int currentDivisor)
Output Parameters:
  • voltageMultiplier – Type: int, Range: [0 to 216 - 1]
  • voltageDivisor – Type: int, Range: [0 to 216 - 1]
  • currentMultiplier – Type: int, Range: [0 to 216 - 1]
  • currentDivisor – Type: int, Range: [0 to 216 - 1]

Returns the calibration as set by SetCalibration().

void BrickletVoltageCurrentV2.GetSPITFPErrorCount(out long errorCountAckChecksum, out long errorCountMessageChecksum, out long errorCountFrame, out long errorCountOverflow)
Output Parameters:
  • errorCountAckChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

void BrickletVoltageCurrentV2.SetStatusLEDConfig(byte config)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_ON = 1
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
byte BrickletVoltageCurrentV2.GetStatusLEDConfig()
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_ON = 1
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletVoltageCurrentV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
short BrickletVoltageCurrentV2.GetChipTemperature()
Returns:
  • temperature – Type: short, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

void BrickletVoltageCurrentV2.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

void BrickletVoltageCurrentV2.GetIdentity(out string uid, out string connectedUid, out char position, out byte[] hardwareVersion, out byte[] firmwareVersion, out int deviceIdentifier)
Output Parameters:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: byte[], Length: 3
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • firmwareVersion – Type: byte[], Length: 3
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

void BrickletVoltageCurrentV2.SetCurrentCallbackConfiguration(long period, bool valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0

The period is the period with which the CurrentCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the CurrentCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.GetCurrentCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out int min, out int max)
Output Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mA, Range: [-231 to 231 - 1], Default: 0

Returns the callback configuration as set by SetCurrentCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.SetVoltageCallbackConfiguration(long period, bool valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0

The period is the period with which the VoltageCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the VoltageCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.GetVoltageCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out int min, out int max)
Output Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mV, Range: [-231 to 231 - 1], Default: 0

Returns the callback configuration as set by SetVoltageCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.SetPowerCallbackConfiguration(long period, bool valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0

The period is the period with which the PowerCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the PowerCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'
void BrickletVoltageCurrentV2.GetPowerCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out int min, out int max)
Output Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1 mW, Range: [-231 to 231 - 1], Default: 0

Returns the callback configuration as set by SetPowerCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OFF = 'x'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletVoltageCurrentV2.THRESHOLD_OPTION_GREATER = '>'

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by appending your callback handler to the corresponding event:

void MyCallback(BrickletVoltageCurrentV2 sender, int value)
{
    System.Console.WriteLine("Value: " + value);
}

voltageCurrentV2.ExampleCallback += MyCallback;

The available events are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

event BrickletVoltageCurrentV2.CurrentCallback(BrickletVoltageCurrentV2 sender, int current)
Callback Parameters:
  • sender – Type: BrickletVoltageCurrentV2
  • current – Type: int, Unit: 1 mA, Range: [-20000 to 20000]

This callback is triggered periodically according to the configuration set by SetCurrentCallbackConfiguration().

The parameter is the same as GetCurrent().

event BrickletVoltageCurrentV2.VoltageCallback(BrickletVoltageCurrentV2 sender, int voltage)
Callback Parameters:
  • sender – Type: BrickletVoltageCurrentV2
  • voltage – Type: int, Unit: 1 mV, Range: [0 to 36000]

This callback is triggered periodically according to the configuration set by SetVoltageCallbackConfiguration().

The parameter is the same as GetVoltage().

event BrickletVoltageCurrentV2.PowerCallback(BrickletVoltageCurrentV2 sender, int power)
Callback Parameters:
  • sender – Type: BrickletVoltageCurrentV2
  • power – Type: int, Unit: 1 mW, Range: [0 to 720000]

This callback is triggered periodically according to the configuration set by SetPowerCallbackConfiguration().

The parameter is the same as GetPower().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

byte[] BrickletVoltageCurrentV2.GetAPIVersion()
Output Parameters:
  • apiVersion – Type: byte[], Length: 3
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

bool BrickletVoltageCurrentV2.GetResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: bool

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletVoltageCurrentV2.FUNCTION_SET_CURRENT_CALLBACK_CONFIGURATION = 2
  • BrickletVoltageCurrentV2.FUNCTION_SET_VOLTAGE_CALLBACK_CONFIGURATION = 6
  • BrickletVoltageCurrentV2.FUNCTION_SET_POWER_CALLBACK_CONFIGURATION = 10
  • BrickletVoltageCurrentV2.FUNCTION_SET_CONFIGURATION = 13
  • BrickletVoltageCurrentV2.FUNCTION_SET_CALIBRATION = 15
  • BrickletVoltageCurrentV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletVoltageCurrentV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletVoltageCurrentV2.FUNCTION_RESET = 243
  • BrickletVoltageCurrentV2.FUNCTION_WRITE_UID = 248
void BrickletVoltageCurrentV2.SetResponseExpected(byte functionId, bool responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: bool

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletVoltageCurrentV2.FUNCTION_SET_CURRENT_CALLBACK_CONFIGURATION = 2
  • BrickletVoltageCurrentV2.FUNCTION_SET_VOLTAGE_CALLBACK_CONFIGURATION = 6
  • BrickletVoltageCurrentV2.FUNCTION_SET_POWER_CALLBACK_CONFIGURATION = 10
  • BrickletVoltageCurrentV2.FUNCTION_SET_CONFIGURATION = 13
  • BrickletVoltageCurrentV2.FUNCTION_SET_CALIBRATION = 15
  • BrickletVoltageCurrentV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletVoltageCurrentV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletVoltageCurrentV2.FUNCTION_RESET = 243
  • BrickletVoltageCurrentV2.FUNCTION_WRITE_UID = 248
void BrickletVoltageCurrentV2.SetResponseExpectedAll(bool responseExpected)
Parameters:
  • responseExpected – Type: bool

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

byte BrickletVoltageCurrentV2.SetBootloaderMode(byte mode)
Parameters:
  • mode – Type: byte, Range: See constants
Returns:
  • status – Type: byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_OK = 0
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletVoltageCurrentV2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
byte BrickletVoltageCurrentV2.GetBootloaderMode()
Returns:
  • mode – Type: byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletVoltageCurrentV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
void BrickletVoltageCurrentV2.SetWriteFirmwarePointer(long pointer)
Parameters:
  • pointer – Type: long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

byte BrickletVoltageCurrentV2.WriteFirmware(byte[] data)
Parameters:
  • data – Type: byte[], Length: 64, Range: [0 to 255]
Returns:
  • status – Type: byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

void BrickletVoltageCurrentV2.WriteUID(long uid)
Parameters:
  • uid – Type: long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

long BrickletVoltageCurrentV2.ReadUID()
Returns:
  • uid – Type: long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

int BrickletVoltageCurrentV2.DEVICE_IDENTIFIER

This constant is used to identify a Voltage/Current Bricklet 2.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

string BrickletVoltageCurrentV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Voltage/Current Bricklet 2.0.