Delphi/Lazarus - DC Bricklet 2.0

This is the description of the Delphi/Lazarus API bindings for the DC Bricklet 2.0. General information and technical specifications for the DC Bricklet 2.0 are summarized in its hardware description.

An installation guide for the Delphi/Lazarus API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Configuration

Download (ExampleConfiguration.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
program ExampleConfiguration;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletDCV2;

type
  TExample = class
  private
    ipcon: TIPConnection;
    dc: TBrickletDCV2;
  public
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your DC Bricklet 2.0 }

var
  e: TExample;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  dc := TBrickletDCV2.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  dc.SetDriveMode(BRICKLET_DC_V2_DRIVE_MODE_DRIVE_COAST);
  dc.SetPWMFrequency(10000); { Use PWM frequency of 10 kHz }
  dc.SetMotion(4096,
               16384); { Slow acceleration (12.5 %/s), fast decceleration (50 %/s) for stopping }
  dc.SetVelocity(32767); { Full speed forward (100 %) }
  dc.SetEnabled(true); { Enable motor power }

  WriteLn('Press key to exit');
  ReadLn;

  dc.SetVelocity(0); { Stop motor before disabling motor power }
  Sleep(2000); { Wait for motor to actually stop: velocity (100 %) / decceleration (50 %/s) = 2 s }
  dc.SetEnabled(false); { Disable motor power }

  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

Callback

Download (ExampleCallback.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
program ExampleCallback;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletDCV2;

type
  TExample = class
  private
    ipcon: TIPConnection;
    dc: TBrickletDCV2;
  public
    procedure VelocityReachedCB(sender: TBrickletDCV2; const velocity: smallint);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your DC Bricklet 2.0 }

var
  e: TExample;

{ Use velocity reached callback to swing back and forth
  between full speed forward and full speed backward }
procedure TExample.VelocityReachedCB(sender: TBrickletDCV2; const velocity: smallint);
begin
  if (velocity = 32767) then begin
    WriteLn('Velocity: Full speed forward, now turning backward');
    sender.SetVelocity(-32767);
  end
  else if (velocity = -32767) then begin
    WriteLn('Velocity: Full speed backward, now turning forward');
    sender.SetVelocity(32767);
  end
  else begin
    WriteLn('Error'); { Can only happen if another program sets velocity }
  end;
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  dc := TBrickletDCV2.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { The acceleration has to be smaller or equal to the maximum
    acceleration of the DC motor, otherwise the velocity reached
    callback will be called too early }
  dc.SetMotion(4096,
               16384); { Slow acceleration (12.5 %/s), fast decceleration (50 %/s) for stopping }
  dc.SetVelocity(32767); { Full speed forward (100 %) }

  { Register velocity reached callback to procedure VelocityReachedCB }
  dc.OnVelocityReached := {$ifdef FPC}@{$endif}VelocityReachedCB;

  { Enable motor power }
  dc.SetEnabled(true);

  WriteLn('Press key to exit');
  ReadLn;

  dc.SetVelocity(0); { Stop motor before disabling motor power }
  Sleep(2000); { Wait for motor to actually stop: velocity (100 %) / decceleration (50 %/s) = 2 s }
  dc.SetEnabled(false); { Disable motor power }

  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

API

Since Delphi does not support multiple return values directly, we use the out keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

constructor TBrickletDCV2.Create(const uid: string; ipcon: TIPConnection)
Parameters:
  • uid – Type: string
  • ipcon – Type: TIPConnection
Returns:
  • dcV2 – Type: TBrickletDCV2

Creates an object with the unique device ID uid:

dcV2 := TBrickletDCV2.Create('YOUR_DEVICE_UID', ipcon);

This object can then be used after the IP Connection is connected.

procedure TBrickletDCV2.SetEnabled(const enabled: boolean)
Parameters:
  • enabled – Type: boolean

Enables/Disables the driver chip. The driver parameters can be configured (velocity, acceleration, etc) before it is enabled.

function TBrickletDCV2.GetEnabled: boolean
Returns:
  • enabled – Type: boolean, Default: false

Returns true if the driver chip is enabled, false otherwise.

procedure TBrickletDCV2.SetVelocity(const velocity: smallint)
Parameters:
  • velocity – Type: smallint, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0

Sets the velocity of the motor. Whereas -32767 is full speed backward, 0 is stop and 32767 is full speed forward. Depending on the acceleration (see SetMotion), the motor is not immediately brought to the velocity but smoothly accelerated.

The velocity describes the duty cycle of the PWM with which the motor is controlled, e.g. a velocity of 3277 sets a PWM with a 10% duty cycle. You can not only control the duty cycle of the PWM but also the frequency, see SetPWMFrequency.

function TBrickletDCV2.GetVelocity: smallint
Returns:
  • velocity – Type: smallint, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0

Returns the velocity as set by SetVelocity.

function TBrickletDCV2.GetCurrentVelocity: smallint
Returns:
  • velocity – Type: smallint, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0

Returns the current velocity of the motor. This value is different from GetVelocity whenever the motor is currently accelerating to a goal set by SetVelocity.

procedure TBrickletDCV2.SetMotion(const acceleration: word; const deceleration: word)
Parameters:
  • acceleration – Type: word, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
  • deceleration – Type: word, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000

Sets the acceleration and deceleration of the motor. It is given in velocity/s. An acceleration of 10000 means, that every second the velocity is increased by 10000 (or about 30% duty cycle).

For example: If the current velocity is 0 and you want to accelerate to a velocity of 16000 (about 50% duty cycle) in 10 seconds, you should set an acceleration of 1600.

If acceleration and deceleration is set to 0, there is no speed ramping, i.e. a new velocity is immediately given to the motor.

procedure TBrickletDCV2.GetMotion(out acceleration: word; out deceleration: word)
Output Parameters:
  • acceleration – Type: word, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
  • deceleration – Type: word, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000

Returns the acceleration/deceleration as set by SetMotion.

procedure TBrickletDCV2.FullBrake

Executes an active full brake.

Warning

This function is for emergency purposes, where an immediate brake is necessary. Depending on the current velocity and the strength of the motor, a full brake can be quite violent.

Call SetVelocity with 0 if you just want to stop the motor.

function TBrickletDCV2.GetPWMFrequency: word
Returns:
  • frequency – Type: word, Unit: 1 Hz, Range: [1 to 20000], Default: 15000

Returns the PWM frequency as set by SetPWMFrequency.

procedure TBrickletDCV2.GetPowerStatistics(out voltage: word; out current: word)
Output Parameters:
  • voltage – Type: word, Unit: 1 mV, Range: [0 to 216 - 1]
  • current – Type: word, Unit: 1 mA, Range: [0 to 216 - 1]

Returns input voltage and current usage of the driver.

Advanced Functions

procedure TBrickletDCV2.SetDriveMode(const mode: byte)
Parameters:
  • mode – Type: byte, Range: See constants, Default: 0

Sets the drive mode. Possible modes are:

  • 0 = Drive/Brake
  • 1 = Drive/Coast

These modes are different kinds of motor controls.

In Drive/Brake mode, the motor is always either driving or braking. There is no freewheeling. Advantages are: A more linear correlation between PWM and velocity, more exact accelerations and the possibility to drive with slower velocities.

In Drive/Coast mode, the motor is always either driving or freewheeling. Advantages are: Less current consumption and less demands on the motor and driver chip.

The following constants are available for this function:

For mode:

  • BRICKLET_DC_V2_DRIVE_MODE_DRIVE_BRAKE = 0
  • BRICKLET_DC_V2_DRIVE_MODE_DRIVE_COAST = 1
function TBrickletDCV2.GetDriveMode: byte
Returns:
  • mode – Type: byte, Range: See constants, Default: 0

Returns the drive mode, as set by SetDriveMode.

The following constants are available for this function:

For mode:

  • BRICKLET_DC_V2_DRIVE_MODE_DRIVE_BRAKE = 0
  • BRICKLET_DC_V2_DRIVE_MODE_DRIVE_COAST = 1
procedure TBrickletDCV2.SetPWMFrequency(const frequency: word)
Parameters:
  • frequency – Type: word, Unit: 1 Hz, Range: [1 to 20000], Default: 15000

Sets the frequency of the PWM with which the motor is driven. Often a high frequency is less noisy and the motor runs smoother. However, with a low frequency there are less switches and therefore fewer switching losses. Also with most motors lower frequencies enable higher torque.

If you have no idea what all this means, just ignore this function and use the default frequency, it will very likely work fine.

procedure TBrickletDCV2.SetErrorLEDConfig(const config: byte)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Configures the error LED to be either turned off, turned on, blink in heartbeat mode or show an error.

If the LED is configured to show errors it has three different states:

  • Off: No error present.
  • 1s interval blinking: Input voltage too low (below 6V).
  • 250ms interval blinking: Overtemperature or overcurrent.

The following constants are available for this function:

For config:

  • BRICKLET_DC_V2_ERROR_LED_CONFIG_OFF = 0
  • BRICKLET_DC_V2_ERROR_LED_CONFIG_ON = 1
  • BRICKLET_DC_V2_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_DC_V2_ERROR_LED_CONFIG_SHOW_ERROR = 3
function TBrickletDCV2.GetErrorLEDConfig: byte
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the LED configuration as set by SetErrorLEDConfig

The following constants are available for this function:

For config:

  • BRICKLET_DC_V2_ERROR_LED_CONFIG_OFF = 0
  • BRICKLET_DC_V2_ERROR_LED_CONFIG_ON = 1
  • BRICKLET_DC_V2_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_DC_V2_ERROR_LED_CONFIG_SHOW_ERROR = 3
procedure TBrickletDCV2.GetSPITFPErrorCount(out errorCountAckChecksum: longword; out errorCountMessageChecksum: longword; out errorCountFrame: longword; out errorCountOverflow: longword)
Output Parameters:
  • errorCountAckChecksum – Type: longword, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: longword, Range: [0 to 232 - 1]
  • errorCountFrame – Type: longword, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: longword, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

procedure TBrickletDCV2.SetStatusLEDConfig(const config: byte)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BRICKLET_DC_V2_STATUS_LED_CONFIG_OFF = 0
  • BRICKLET_DC_V2_STATUS_LED_CONFIG_ON = 1
  • BRICKLET_DC_V2_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_DC_V2_STATUS_LED_CONFIG_SHOW_STATUS = 3
function TBrickletDCV2.GetStatusLEDConfig: byte
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig

The following constants are available for this function:

For config:

  • BRICKLET_DC_V2_STATUS_LED_CONFIG_OFF = 0
  • BRICKLET_DC_V2_STATUS_LED_CONFIG_ON = 1
  • BRICKLET_DC_V2_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_DC_V2_STATUS_LED_CONFIG_SHOW_STATUS = 3
function TBrickletDCV2.GetChipTemperature: smallint
Returns:
  • temperature – Type: smallint, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

procedure TBrickletDCV2.Reset

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

procedure TBrickletDCV2.GetIdentity(out uid: string; out connectedUid: string; out position: char; out hardwareVersion: array [0..2] of byte; out firmwareVersion: array [0..2] of byte; out deviceIdentifier: word)
Output Parameters:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • firmwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • deviceIdentifier – Type: word, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

procedure TBrickletDCV2.SetEmergencyShutdownCallbackConfiguration(const enabled: boolean)
Parameters:
  • enabled – Type: boolean, Default: false

Enable/Disable OnEmergencyShutdown callback.

function TBrickletDCV2.GetEmergencyShutdownCallbackConfiguration: boolean
Returns:
  • enabled – Type: boolean, Default: true

Returns the callback configuration as set by SetEmergencyShutdownCallbackConfiguration.

procedure TBrickletDCV2.SetVelocityReachedCallbackConfiguration(const enabled: boolean)
Parameters:
  • enabled – Type: boolean, Default: false

Enable/Disable OnVelocityReached callback.

function TBrickletDCV2.GetVelocityReachedCallbackConfiguration: boolean
Returns:
  • enabled – Type: boolean, Default: false

Returns the callback configuration as set by SetVelocityReachedCallbackConfiguration.

procedure TBrickletDCV2.SetCurrentVelocityCallbackConfiguration(const period: longword; const valueHasToChange: boolean)
Parameters:
  • period – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false

The period is the period with which the OnCurrentVelocity callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

procedure TBrickletDCV2.GetCurrentVelocityCallbackConfiguration(out period: longword; out valueHasToChange: boolean)
Output Parameters:
  • period – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false

Returns the callback configuration as set by SetCurrentVelocityCallbackConfiguration.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

procedure TExample.MyCallback(sender: TBrickletDCV2; const value: longint);
begin
  WriteLn(Format('Value: %d', [value]));
end;

dcV2.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;

The available callback properties and their parameter types are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

property TBrickletDCV2.OnEmergencyShutdown
procedure(sender: TBrickletDCV2) of object;
Callback Parameters:
  • sender – Type: TBrickletDCV2

This callback is triggered if either the current consumption is too high (above 5A) or the temperature of the driver chip is too high (above 175°C). These two possibilities are essentially the same, since the temperature will reach this threshold immediately if the motor consumes too much current. In case of a voltage below 3.3V (external or stack) this callback is triggered as well.

If this callback is triggered, the driver chip gets disabled at the same time. That means, SetEnabled has to be called to drive the motor again.

Note

This callback only works in Drive/Brake mode (see SetDriveMode). In Drive/Coast mode it is unfortunately impossible to reliably read the overcurrent/overtemperature signal from the driver chip.

property TBrickletDCV2.OnVelocityReached
procedure(sender: TBrickletDCV2; const velocity: smallint) of object;
Callback Parameters:
  • sender – Type: TBrickletDCV2
  • velocity – Type: smallint, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1]

This callback is triggered whenever a set velocity is reached. For example: If a velocity of 0 is present, acceleration is set to 5000 and velocity to 10000, the OnVelocityReached callback will be triggered after about 2 seconds, when the set velocity is actually reached.

Note

Since we can't get any feedback from the DC motor, this only works if the acceleration (see SetMotion) is set smaller or equal to the maximum acceleration of the motor. Otherwise the motor will lag behind the control value and the callback will be triggered too early.

property TBrickletDCV2.OnCurrentVelocity
procedure(sender: TBrickletDCV2; const velocity: smallint) of object;
Callback Parameters:
  • sender – Type: TBrickletDCV2
  • velocity – Type: smallint, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1]

This callback is triggered with the period that is set by SetCurrentVelocityCallbackConfiguration. The parameter is the current velocity used by the motor.

The OnCurrentVelocity callback is only triggered after the set period if there is a change in the velocity.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

function TBrickletDCV2.GetAPIVersion: array [0..2] of byte
Output Parameters:
  • apiVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

function TBrickletDCV2.GetResponseExpected(const functionId: byte): boolean
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected. For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_DC_V2_FUNCTION_SET_ENABLED = 1
  • BRICKLET_DC_V2_FUNCTION_SET_VELOCITY = 3
  • BRICKLET_DC_V2_FUNCTION_SET_MOTION = 6
  • BRICKLET_DC_V2_FUNCTION_FULL_BRAKE = 8
  • BRICKLET_DC_V2_FUNCTION_SET_DRIVE_MODE = 9
  • BRICKLET_DC_V2_FUNCTION_SET_PWM_FREQUENCY = 11
  • BRICKLET_DC_V2_FUNCTION_SET_ERROR_LED_CONFIG = 14
  • BRICKLET_DC_V2_FUNCTION_SET_EMERGENCY_SHUTDOWN_CALLBACK_CONFIGURATION = 16
  • BRICKLET_DC_V2_FUNCTION_SET_VELOCITY_REACHED_CALLBACK_CONFIGURATION = 18
  • BRICKLET_DC_V2_FUNCTION_SET_CURRENT_VELOCITY_CALLBACK_CONFIGURATION = 20
  • BRICKLET_DC_V2_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BRICKLET_DC_V2_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BRICKLET_DC_V2_FUNCTION_RESET = 243
  • BRICKLET_DC_V2_FUNCTION_WRITE_UID = 248
procedure TBrickletDCV2.SetResponseExpected(const functionId: byte; const responseExpected: boolean)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_DC_V2_FUNCTION_SET_ENABLED = 1
  • BRICKLET_DC_V2_FUNCTION_SET_VELOCITY = 3
  • BRICKLET_DC_V2_FUNCTION_SET_MOTION = 6
  • BRICKLET_DC_V2_FUNCTION_FULL_BRAKE = 8
  • BRICKLET_DC_V2_FUNCTION_SET_DRIVE_MODE = 9
  • BRICKLET_DC_V2_FUNCTION_SET_PWM_FREQUENCY = 11
  • BRICKLET_DC_V2_FUNCTION_SET_ERROR_LED_CONFIG = 14
  • BRICKLET_DC_V2_FUNCTION_SET_EMERGENCY_SHUTDOWN_CALLBACK_CONFIGURATION = 16
  • BRICKLET_DC_V2_FUNCTION_SET_VELOCITY_REACHED_CALLBACK_CONFIGURATION = 18
  • BRICKLET_DC_V2_FUNCTION_SET_CURRENT_VELOCITY_CALLBACK_CONFIGURATION = 20
  • BRICKLET_DC_V2_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BRICKLET_DC_V2_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BRICKLET_DC_V2_FUNCTION_RESET = 243
  • BRICKLET_DC_V2_FUNCTION_WRITE_UID = 248
procedure TBrickletDCV2.SetResponseExpectedAll(const responseExpected: boolean)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

function TBrickletDCV2.SetBootloaderMode(const mode: byte): byte
Parameters:
  • mode – Type: byte, Range: See constants
Returns:
  • status – Type: byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BRICKLET_DC_V2_BOOTLOADER_MODE_BOOTLOADER = 0
  • BRICKLET_DC_V2_BOOTLOADER_MODE_FIRMWARE = 1
  • BRICKLET_DC_V2_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BRICKLET_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BRICKLET_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BRICKLET_DC_V2_BOOTLOADER_STATUS_OK = 0
  • BRICKLET_DC_V2_BOOTLOADER_STATUS_INVALID_MODE = 1
  • BRICKLET_DC_V2_BOOTLOADER_STATUS_NO_CHANGE = 2
  • BRICKLET_DC_V2_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BRICKLET_DC_V2_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BRICKLET_DC_V2_BOOTLOADER_STATUS_CRC_MISMATCH = 5
function TBrickletDCV2.GetBootloaderMode: byte
Returns:
  • mode – Type: byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode.

The following constants are available for this function:

For mode:

  • BRICKLET_DC_V2_BOOTLOADER_MODE_BOOTLOADER = 0
  • BRICKLET_DC_V2_BOOTLOADER_MODE_FIRMWARE = 1
  • BRICKLET_DC_V2_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BRICKLET_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BRICKLET_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
procedure TBrickletDCV2.SetWriteFirmwarePointer(const pointer: longword)
Parameters:
  • pointer – Type: longword, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

function TBrickletDCV2.WriteFirmware(const data: array [0..63] of byte): byte
Parameters:
  • data – Type: array [0..63] of byte, Range: [0 to 255]
Returns:
  • status – Type: byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

procedure TBrickletDCV2.WriteUID(const uid: longword)
Parameters:
  • uid – Type: longword, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

function TBrickletDCV2.ReadUID: longword
Returns:
  • uid – Type: longword, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

const BRICKLET_DC_V2_DEVICE_IDENTIFIER

This constant is used to identify a DC Bricklet 2.0.

The GetIdentity function and the TIPConnection.OnEnumerate callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

const BRICKLET_DC_V2_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a DC Bricklet 2.0.