Delphi/Lazarus - Thermal Imaging Bricklet

This is the description of the Delphi/Lazarus API bindings for the Thermal Imaging Bricklet. General information and technical specifications for the Thermal Imaging Bricklet are summarized in its hardware description.

An installation guide for the Delphi/Lazarus API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Callback

Download (ExampleCallback.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
program ExampleCallback;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletThermalImaging;

type
  TExample = class
  private
    ipcon: TIPConnection;
    ti: TBrickletThermalImaging;
  public
    procedure HighContrastImageCB(sender: TBrickletThermalImaging;
                                  const image: TArrayOfUInt8);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your Thermal Imaging Bricklet }

var
  e: TExample;

{ Callback procedure for high contrast image callback }
procedure TExample.HighContrastImageCB(sender: TBrickletThermalImaging;
                                       const image: TArrayOfUInt8);
begin
  { image is an array of size 80*60 with a 8 bit grey value for each element }
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  ti := TBrickletThermalImaging.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { Register high contrast image callback to procedure HighContrastImageCB }
  ti.OnHighContrastImage := {$ifdef FPC}@{$endif}HighContrastImageCB;

  { Enable high contrast image transfer for callback }
  ti.SetImageTransferConfig(BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE);

  WriteLn('Press key to exit');
  ReadLn;
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

API

Since Delphi does not support multiple return values directly, we use the out keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

constructor TBrickletThermalImaging.Create(const uid: string; ipcon: TIPConnection)
Parameters:
  • uid – Type: string
  • ipcon – Type: TIPConnection
Returns:
  • thermalImaging – Type: TBrickletThermalImaging

Creates an object with the unique device ID uid:

thermalImaging := TBrickletThermalImaging.Create('YOUR_DEVICE_UID', ipcon);

This object can then be used after the IP Connection is connected.

function TBrickletThermalImaging.GetHighContrastImage: array [0..4799] of byte
Returns:
  • image – Type: array [0..4799] of byte, Range: [0 to 255]

Returns the current high contrast image. See here for the difference between High Contrast and Temperature Image. If you don't know what to use the High Contrast Image is probably right for you.

The data is organized as a 8-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 8-bit value represents one gray-scale image pixel that can directly be shown to a user on a display.

Before you can use this function you have to enable it with SetImageTransferConfig.

function TBrickletThermalImaging.GetTemperatureImage: array [0..4799] of word
Returns:
  • image – Type: array [0..4799] of word, Unit: ? K, Range: [0 to 216 - 1]

Returns the current temperature image. See here for the difference between High Contrast and Temperature Image. If you don't know what to use the High Contrast Image is probably right for you.

The data is organized as a 16-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 16-bit value represents one temperature measurement in either Kelvin/10 or Kelvin/100 (depending on the resolution set with SetResolution).

Before you can use this function you have to enable it with SetImageTransferConfig.

procedure TBrickletThermalImaging.GetStatistics(out spotmeterStatistics: array [0..3] of word; out temperatures: array [0..3] of word; out resolution: byte; out ffcStatus: byte; out temperatureWarning: array [0..1] of boolean)
Output Parameters:
  • spotmeterStatistics – Type: array [0..3] of word
    • 0: meanTemperature – Type: word, Unit: ? K, Range: [0 to 216 - 1]
    • 1: maxTemperature – Type: word, Unit: ? K, Range: [0 to 216 - 1]
    • 2: minTemperature – Type: word, Unit: ? K, Range: [0 to 216 - 1]
    • 3: pixelCount – Type: word, Range: [0 to 4800]
  • temperatures – Type: array [0..3] of word
    • 0: focalPlainArray – Type: word, Unit: ? K, Range: [0 to 216 - 1]
    • 1: focalPlainArrayLastFFC – Type: word, Unit: ? K, Range: [0 to 216 - 1]
    • 2: housing – Type: word, Unit: ? K, Range: [0 to 216 - 1]
    • 3: housingLastFFC – Type: word, Unit: ? K, Range: [0 to 216 - 1]
  • resolution – Type: byte, Range: See constants
  • ffcStatus – Type: byte, Range: See constants
  • temperatureWarning – Type: array [0..1] of boolean
    • 0: shutterLockout – Type: boolean
    • 1: overtemperatureShutDownImminent – Type: boolean

Returns the spotmeter statistics, various temperatures, current resolution and status bits.

The spotmeter statistics are:

  • Index 0: Mean Temperature.
  • Index 1: Maximum Temperature.
  • Index 2: Minimum Temperature.
  • Index 3: Pixel Count of spotmeter region of interest.

The temperatures are:

  • Index 0: Focal Plain Array temperature.
  • Index 1: Focal Plain Array temperature at last FFC (Flat Field Correction).
  • Index 2: Housing temperature.
  • Index 3: Housing temperature at last FFC.

The resolution is either 0 to 6553 Kelvin or 0 to 655 Kelvin. If the resolution is the former, the temperatures are in Kelvin/10, if it is the latter the temperatures are in Kelvin/100.

FFC (Flat Field Correction) Status:

  • FFC Never Commanded: Only seen on startup before first FFC.
  • FFC Imminent: This state is entered 2 seconds prior to initiating FFC.
  • FFC In Progress: Flat field correction is started (shutter moves in front of lens and back). Takes about 1 second.
  • FFC Complete: Shutter is in waiting position again, FFC done.

Temperature warning bits:

  • Index 0: Shutter lockout (if true shutter is locked out because temperature is outside -10°C to +65°C)
  • Index 1: Overtemperature shut down imminent (goes true 10 seconds before shutdown)

The following constants are available for this function:

For resolution:

  • BRICKLET_THERMAL_IMAGING_RESOLUTION_0_TO_6553_KELVIN = 0
  • BRICKLET_THERMAL_IMAGING_RESOLUTION_0_TO_655_KELVIN = 1

For ffcStatus:

  • BRICKLET_THERMAL_IMAGING_FFC_STATUS_NEVER_COMMANDED = 0
  • BRICKLET_THERMAL_IMAGING_FFC_STATUS_IMMINENT = 1
  • BRICKLET_THERMAL_IMAGING_FFC_STATUS_IN_PROGRESS = 2
  • BRICKLET_THERMAL_IMAGING_FFC_STATUS_COMPLETE = 3
procedure TBrickletThermalImaging.SetResolution(const resolution: byte)
Parameters:
  • resolution – Type: byte, Range: See constants, Default: 1

Sets the resolution. The Thermal Imaging Bricklet can either measure

  • from 0 to 6553 Kelvin (-273.15°C to +6279.85°C) with 0.1°C resolution or
  • from 0 to 655 Kelvin (-273.15°C to +381.85°C) with 0.01°C resolution.

The accuracy is specified for -10°C to 450°C in the first range and -10°C and 140°C in the second range.

The following constants are available for this function:

For resolution:

  • BRICKLET_THERMAL_IMAGING_RESOLUTION_0_TO_6553_KELVIN = 0
  • BRICKLET_THERMAL_IMAGING_RESOLUTION_0_TO_655_KELVIN = 1
function TBrickletThermalImaging.GetResolution: byte
Returns:
  • resolution – Type: byte, Range: See constants

Returns the resolution as set by SetResolution.

The following constants are available for this function:

For resolution:

  • BRICKLET_THERMAL_IMAGING_RESOLUTION_0_TO_6553_KELVIN = 0
  • BRICKLET_THERMAL_IMAGING_RESOLUTION_0_TO_655_KELVIN = 1
procedure TBrickletThermalImaging.SetSpotmeterConfig(const regionOfInterest: array [0..3] of byte)
Parameters:
  • regionOfInterest – Type: array [0..3] of byte
    • 0: firstColumn – Type: byte, Range: [0 to 79], Default: 39
    • 1: firstRow – Type: byte, Range: [0 to 59], Default: 29
    • 2: lastColumn – Type: byte, Range: [1 to 80], Default: 40
    • 3: lastRow – Type: byte, Range: [1 to 60], Default: 30

Sets the spotmeter region of interest. The 4 values are

  • Index 0: Column start (has to be smaller then Column end).
  • Index 1: Row start (has to be smaller then Row end).
  • Index 2: Column end (has to be smaller then 80).
  • Index 3: Row end (has to be smaller then 60).

The spotmeter statistics can be read out with GetStatistics.

function TBrickletThermalImaging.GetSpotmeterConfig: array [0..3] of byte
Output Parameters:
  • regionOfInterest – Type: array [0..3] of byte
    • 0: firstColumn – Type: byte, Range: [0 to 78], Default: 39
    • 1: firstRow – Type: byte, Range: [0 to 58], Default: 29
    • 2: lastColumn – Type: byte, Range: [1 to 79], Default: 40
    • 3: lastRow – Type: byte, Range: [1 to 59], Default: 30

Returns the spotmeter config as set by SetSpotmeterConfig.

procedure TBrickletThermalImaging.SetHighContrastConfig(const regionOfInterest: array [0..3] of byte; const dampeningFactor: word; const clipLimit: array [0..1] of word; const emptyCounts: word)
Parameters:
  • regionOfInterest – Type: array [0..3] of byte
    • 0: firstColumn – Type: byte, Range: [0 to 78], Default: 0
    • 1: firstRow – Type: byte, Range: [0 to 58], Default: 0
    • 2: lastColumn – Type: byte, Range: [1 to 79], Default: 79
    • 3: lastRow – Type: byte, Range: [1 to 59], Default: 59
  • dampeningFactor – Type: word, Range: [0 to 256], Default: 64
  • clipLimit – Type: array [0..1] of word
    • 0: agcHEQClipLimitHigh – Type: word, Range: [0 to 4800], Default: 4800
    • 1: agcHEQClipLimitLow – Type: word, Range: [0 to 210], Default: 29
  • emptyCounts – Type: word, Range: [0 to 214 - 1], Default: 2

Sets the high contrast region of interest, dampening factor, clip limit and empty counts. This config is only used in high contrast mode (see SetImageTransferConfig).

The high contrast region of interest consists of four values:

  • Index 0: Column start (has to be smaller or equal then Column end).
  • Index 1: Row start (has to be smaller then Row end).
  • Index 2: Column end (has to be smaller then 80).
  • Index 3: Row end (has to be smaller then 60).

The algorithm to generate the high contrast image is applied to this region.

Dampening Factor: This parameter is the amount of temporal dampening applied to the HEQ (history equalization) transformation function. An IIR filter of the form:

(N / 256) * previous + ((256 - N) / 256) * current

is applied, and the HEQ dampening factor represents the value N in the equation, i.e., a value that applies to the amount of influence the previous HEQ transformation function has on the current function. The lower the value of N the higher the influence of the current video frame whereas the higher the value of N the more influence the previous damped transfer function has.

Clip Limit Index 0 (AGC HEQ Clip Limit High): This parameter defines the maximum number of pixels allowed to accumulate in any given histogram bin. Any additional pixels in a given bin are clipped. The effect of this parameter is to limit the influence of highly-populated bins on the resulting HEQ transformation function.

Clip Limit Index 1 (AGC HEQ Clip Limit Low): This parameter defines an artificial population that is added to every non-empty histogram bin. In other words, if the Clip Limit Low is set to L, a bin with an actual population of X will have an effective population of L + X. Any empty bin that is nearby a populated bin will be given an artificial population of L. The effect of higher values is to provide a more linear transfer function; lower values provide a more non-linear (equalized) transfer function.

Empty Counts: This parameter specifies the maximum number of pixels in a bin that will be interpreted as an empty bin. Histogram bins with this number of pixels or less will be processed as an empty bin.

procedure TBrickletThermalImaging.GetHighContrastConfig(out regionOfInterest: array [0..3] of byte; out dampeningFactor: word; out clipLimit: array [0..1] of word; out emptyCounts: word)
Output Parameters:
  • regionOfInterest – Type: array [0..3] of byte
    • 0: firstColumn – Type: byte, Range: [0 to 78], Default: 0
    • 1: firstRow – Type: byte, Range: [0 to 58], Default: 0
    • 2: lastColumn – Type: byte, Range: [1 to 79], Default: 79
    • 3: lastRow – Type: byte, Range: [1 to 59], Default: 59
  • dampeningFactor – Type: word, Range: [0 to 256], Default: 64
  • clipLimit – Type: array [0..1] of word
    • 0: agcHEQClipLimitHigh – Type: word, Range: [0 to 4800], Default: 4800
    • 1: agcHEQClipLimitLow – Type: word, Range: [0 to 210], Default: 29
  • emptyCounts – Type: word, Range: [0 to 216 - 1], Default: 2

Returns the high contrast config as set by SetHighContrastConfig.

Advanced Functions

procedure TBrickletThermalImaging.SetFluxLinearParameters(const sceneEmissivity: word; const temperatureBackground: word; const tauWindow: word; const temperaturWindow: word; const tauAtmosphere: word; const temperatureAtmosphere: word; const reflectionWindow: word; const temperatureReflection: word)
Parameters:
  • sceneEmissivity – Type: word, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureBackground – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauWindow – Type: word, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperaturWindow – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauAtmosphere – Type: word, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureAtmosphere – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • reflectionWindow – Type: word, Unit: 25/2048 %, Range: [0 to 213], Default: 0
  • temperatureReflection – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515

Sets the flux linear parameters that can be used for radiometry calibration.

See FLIR document 102-PS245-100-01 for more details.

New in version 2.0.5 (Plugin).

procedure TBrickletThermalImaging.GetFluxLinearParameters(out sceneEmissivity: word; out temperatureBackground: word; out tauWindow: word; out temperaturWindow: word; out tauAtmosphere: word; out temperatureAtmosphere: word; out reflectionWindow: word; out temperatureReflection: word)
Output Parameters:
  • sceneEmissivity – Type: word, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureBackground – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauWindow – Type: word, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperaturWindow – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauAtmosphere – Type: word, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureAtmosphere – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • reflectionWindow – Type: word, Unit: 25/2048 %, Range: [0 to 213], Default: 0
  • temperatureReflection – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515

Returns the flux linear parameters, as set by SetFluxLinearParameters.

New in version 2.0.5 (Plugin).

procedure TBrickletThermalImaging.SetFFCShutterMode(const shutterMode: byte; const tempLockoutState: byte; const videoFreezeDuringFFC: boolean; const ffcDesired: boolean; const elapsedTimeSinceLastFFC: longword; const desiredFFCPeriod: longword; const explicitCmdToOpen: boolean; const desiredFFCTempDelta: word; const imminentDelay: word)
Parameters:
  • shutterMode – Type: byte, Range: See constants, Default: 1
  • tempLockoutState – Type: byte, Range: See constants, Default: 0
  • videoFreezeDuringFFC – Type: boolean, Default: true
  • ffcDesired – Type: boolean, Default: false
  • elapsedTimeSinceLastFFC – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • desiredFFCPeriod – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 300000
  • explicitCmdToOpen – Type: boolean, Default: false
  • desiredFFCTempDelta – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 300
  • imminentDelay – Type: word, Range: [0 to 216 - 1], Default: 52

Sets the FFC shutter mode parameters.

See FLIR document 110-0144-03 4.5.15 for more details.

The following constants are available for this function:

For shutterMode:

  • BRICKLET_THERMAL_IMAGING_SHUTTER_MODE_MANUAL = 0
  • BRICKLET_THERMAL_IMAGING_SHUTTER_MODE_AUTO = 1
  • BRICKLET_THERMAL_IMAGING_SHUTTER_MODE_EXTERNAL = 2

For tempLockoutState:

  • BRICKLET_THERMAL_IMAGING_SHUTTER_LOCKOUT_INACTIVE = 0
  • BRICKLET_THERMAL_IMAGING_SHUTTER_LOCKOUT_HIGH = 1
  • BRICKLET_THERMAL_IMAGING_SHUTTER_LOCKOUT_LOW = 2

New in version 2.0.6 (Plugin).

procedure TBrickletThermalImaging.GetFFCShutterMode(out shutterMode: byte; out tempLockoutState: byte; out videoFreezeDuringFFC: boolean; out ffcDesired: boolean; out elapsedTimeSinceLastFFC: longword; out desiredFFCPeriod: longword; out explicitCmdToOpen: boolean; out desiredFFCTempDelta: word; out imminentDelay: word)
Output Parameters:
  • shutterMode – Type: byte, Range: See constants, Default: 1
  • tempLockoutState – Type: byte, Range: See constants, Default: 0
  • videoFreezeDuringFFC – Type: boolean, Default: true
  • ffcDesired – Type: boolean, Default: false
  • elapsedTimeSinceLastFFC – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • desiredFFCPeriod – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 300000
  • explicitCmdToOpen – Type: boolean, Default: false
  • desiredFFCTempDelta – Type: word, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 300
  • imminentDelay – Type: word, Range: [0 to 216 - 1], Default: 52

Sets the FFC shutter mode parameters.

See FLIR document 110-0144-03 4.5.15 for more details.

The following constants are available for this function:

For shutterMode:

  • BRICKLET_THERMAL_IMAGING_SHUTTER_MODE_MANUAL = 0
  • BRICKLET_THERMAL_IMAGING_SHUTTER_MODE_AUTO = 1
  • BRICKLET_THERMAL_IMAGING_SHUTTER_MODE_EXTERNAL = 2

For tempLockoutState:

  • BRICKLET_THERMAL_IMAGING_SHUTTER_LOCKOUT_INACTIVE = 0
  • BRICKLET_THERMAL_IMAGING_SHUTTER_LOCKOUT_HIGH = 1
  • BRICKLET_THERMAL_IMAGING_SHUTTER_LOCKOUT_LOW = 2

New in version 2.0.6 (Plugin).

procedure TBrickletThermalImaging.RunFFCNormalization

Starts the Flat-Field Correction (FFC) normalization.

See FLIR document 110-0144-03 4.5.16 for more details.

New in version 2.0.6 (Plugin).

procedure TBrickletThermalImaging.GetSPITFPErrorCount(out errorCountAckChecksum: longword; out errorCountMessageChecksum: longword; out errorCountFrame: longword; out errorCountOverflow: longword)
Output Parameters:
  • errorCountAckChecksum – Type: longword, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: longword, Range: [0 to 232 - 1]
  • errorCountFrame – Type: longword, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: longword, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

procedure TBrickletThermalImaging.SetStatusLEDConfig(const config: byte)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_OFF = 0
  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_ON = 1
  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_SHOW_STATUS = 3
function TBrickletThermalImaging.GetStatusLEDConfig: byte
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig

The following constants are available for this function:

For config:

  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_OFF = 0
  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_ON = 1
  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_THERMAL_IMAGING_STATUS_LED_CONFIG_SHOW_STATUS = 3
function TBrickletThermalImaging.GetChipTemperature: smallint
Returns:
  • temperature – Type: smallint, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

procedure TBrickletThermalImaging.Reset

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

procedure TBrickletThermalImaging.GetIdentity(out uid: string; out connectedUid: string; out position: char; out hardwareVersion: array [0..2] of byte; out firmwareVersion: array [0..2] of byte; out deviceIdentifier: word)
Output Parameters:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • firmwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • deviceIdentifier – Type: word, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

procedure TBrickletThermalImaging.SetImageTransferConfig(const config: byte)
Parameters:
  • config – Type: byte, Range: See constants, Default: 0

The necessary bandwidth of this Bricklet is too high to use getter/callback or high contrast/temperature image at the same time. You have to configure the one you want to use, the Bricklet will optimize the internal configuration accordingly.

Corresponding functions:

The following constants are available for this function:

For config:

  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_MANUAL_HIGH_CONTRAST_IMAGE = 0
  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_MANUAL_TEMPERATURE_IMAGE = 1
  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE = 2
  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_CALLBACK_TEMPERATURE_IMAGE = 3
function TBrickletThermalImaging.GetImageTransferConfig: byte
Returns:
  • config – Type: byte, Range: See constants, Default: 0

Returns the image transfer config, as set by SetImageTransferConfig.

The following constants are available for this function:

For config:

  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_MANUAL_HIGH_CONTRAST_IMAGE = 0
  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_MANUAL_TEMPERATURE_IMAGE = 1
  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE = 2
  • BRICKLET_THERMAL_IMAGING_IMAGE_TRANSFER_CALLBACK_TEMPERATURE_IMAGE = 3

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

procedure TExample.MyCallback(sender: TBrickletThermalImaging; const value: longint);
begin
  WriteLn(Format('Value: %d', [value]));
end;

thermalImaging.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;

The available callback properties and their parameter types are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

property TBrickletThermalImaging.OnHighContrastImage
procedure(sender: TBrickletThermalImaging; const image: array [0..4799] of byte) of object;
Callback Parameters:
  • sender – Type: TBrickletThermalImaging
  • image – Type: array [0..4799] of byte, Range: [0 to 255]

This callback is triggered with every new high contrast image if the transfer image config is configured for high contrast callback (see SetImageTransferConfig).

The data is organized as a 8-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 8-bit value represents one gray-scale image pixel that can directly be shown to a user on a display.

Note

If reconstructing the value fails, the callback is triggered with nil for image.

property TBrickletThermalImaging.OnTemperatureImage
procedure(sender: TBrickletThermalImaging; const image: array [0..4799] of word) of object;
Callback Parameters:
  • sender – Type: TBrickletThermalImaging
  • image – Type: array [0..4799] of word, Unit: ? K, Range: [0 to 216 - 1]

This callback is triggered with every new temperature image if the transfer image config is configured for temperature callback (see SetImageTransferConfig).

The data is organized as a 16-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 16-bit value represents one temperature measurement in either Kelvin/10 or Kelvin/100 (depending on the resolution set with SetResolution).

Note

If reconstructing the value fails, the callback is triggered with nil for image.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

function TBrickletThermalImaging.GetAPIVersion: array [0..2] of byte
Output Parameters:
  • apiVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

function TBrickletThermalImaging.GetResponseExpected(const functionId: byte): boolean
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected. For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_RESOLUTION = 4
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_SPOTMETER_CONFIG = 6
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_HIGH_CONTRAST_CONFIG = 8
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_IMAGE_TRANSFER_CONFIG = 10
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_FLUX_LINEAR_PARAMETERS = 14
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_FFC_SHUTTER_MODE = 16
  • BRICKLET_THERMAL_IMAGING_FUNCTION_RUN_FFC_NORMALIZATION = 18
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BRICKLET_THERMAL_IMAGING_FUNCTION_RESET = 243
  • BRICKLET_THERMAL_IMAGING_FUNCTION_WRITE_UID = 248
procedure TBrickletThermalImaging.SetResponseExpected(const functionId: byte; const responseExpected: boolean)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_RESOLUTION = 4
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_SPOTMETER_CONFIG = 6
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_HIGH_CONTRAST_CONFIG = 8
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_IMAGE_TRANSFER_CONFIG = 10
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_FLUX_LINEAR_PARAMETERS = 14
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_FFC_SHUTTER_MODE = 16
  • BRICKLET_THERMAL_IMAGING_FUNCTION_RUN_FFC_NORMALIZATION = 18
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BRICKLET_THERMAL_IMAGING_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BRICKLET_THERMAL_IMAGING_FUNCTION_RESET = 243
  • BRICKLET_THERMAL_IMAGING_FUNCTION_WRITE_UID = 248
procedure TBrickletThermalImaging.SetResponseExpectedAll(const responseExpected: boolean)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

function TBrickletThermalImaging.SetBootloaderMode(const mode: byte): byte
Parameters:
  • mode – Type: byte, Range: See constants
Returns:
  • status – Type: byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_BOOTLOADER = 0
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_FIRMWARE = 1
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_STATUS_OK = 0
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_STATUS_INVALID_MODE = 1
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_STATUS_NO_CHANGE = 2
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_STATUS_CRC_MISMATCH = 5
function TBrickletThermalImaging.GetBootloaderMode: byte
Returns:
  • mode – Type: byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode.

The following constants are available for this function:

For mode:

  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_BOOTLOADER = 0
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_FIRMWARE = 1
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BRICKLET_THERMAL_IMAGING_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
procedure TBrickletThermalImaging.SetWriteFirmwarePointer(const pointer: longword)
Parameters:
  • pointer – Type: longword, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

function TBrickletThermalImaging.WriteFirmware(const data: array [0..63] of byte): byte
Parameters:
  • data – Type: array [0..63] of byte, Range: [0 to 255]
Returns:
  • status – Type: byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

procedure TBrickletThermalImaging.WriteUID(const uid: longword)
Parameters:
  • uid – Type: longword, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

function TBrickletThermalImaging.ReadUID: longword
Returns:
  • uid – Type: longword, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

const BRICKLET_THERMAL_IMAGING_DEVICE_IDENTIFIER

This constant is used to identify a Thermal Imaging Bricklet.

The GetIdentity function and the TIPConnection.OnEnumerate callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

const BRICKLET_THERMAL_IMAGING_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Thermal Imaging Bricklet.