Delphi/Lazarus - Real-Time Clock Bricklet

This is the description of the Delphi/Lazarus API bindings for the Real-Time Clock Bricklet. General information and technical specifications for the Real-Time Clock Bricklet are summarized in its hardware description.

An installation guide for the Delphi/Lazarus API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
program ExampleSimple;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletRealTimeClock;

type
  TExample = class
  private
    ipcon: TIPConnection;
    rtc: TBrickletRealTimeClock;
  public
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your Real-Time Clock Bricklet }

var
  e: TExample;

procedure TExample.Execute;
var year: word; month, day, hour, minute, second, centisecond, weekday: byte;
    timestamp: int64;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  rtc := TBrickletRealTimeClock.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { Get current date and time }
  rtc.GetDateTime(year, month, day, hour, minute, second, centisecond, weekday);

  WriteLn(Format('Year: %d', [year]));
  WriteLn(Format('Month: %d', [month]));
  WriteLn(Format('Day: %d', [day]));
  WriteLn(Format('Hour: %d', [hour]));
  WriteLn(Format('Minute: %d', [minute]));
  WriteLn(Format('Second: %d', [second]));
  WriteLn(Format('Centisecond: %d', [centisecond]));

  if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_MONDAY) then begin
    WriteLn('Weekday: Monday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_TUESDAY) then begin
    WriteLn('Weekday: Tuesday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_WEDNESDAY) then begin
    WriteLn('Weekday: Wednesday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_THURSDAY) then begin
    WriteLn('Weekday: Thursday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_FRIDAY) then begin
    WriteLn('Weekday: Friday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SATURDAY) then begin
    WriteLn('Weekday: Saturday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SUNDAY) then begin
    WriteLn('Weekday: Sunday');
  end;

  { Get current timestamp }
  timestamp := rtc.GetTimestamp;
  WriteLn(Format('Timestamp: %d ms', [timestamp]));

  WriteLn('Press key to exit');
  ReadLn;
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

Callback

Download (ExampleCallback.pas)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
program ExampleCallback;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletRealTimeClock;

type
  TExample = class
  private
    ipcon: TIPConnection;
    rtc: TBrickletRealTimeClock;
  public
    procedure DateTimeCB(sender: TBrickletRealTimeClock; const year: word;
                         const month: byte; const day: byte; const hour: byte;
                         const minute: byte; const second: byte; const centisecond: byte;
                         const weekday: byte; const timestamp: int64);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your Real-Time Clock Bricklet }

var
  e: TExample;

{ Callback procedure for date and time callback }
procedure TExample.DateTimeCB(sender: TBrickletRealTimeClock; const year: word;
                              const month: byte; const day: byte; const hour: byte;
                              const minute: byte; const second: byte;
                              const centisecond: byte; const weekday: byte;
                              const timestamp: int64);
begin
  WriteLn(Format('Year: %d', [year]));
  WriteLn(Format('Month: %d', [month]));
  WriteLn(Format('Day: %d', [day]));
  WriteLn(Format('Hour: %d', [hour]));
  WriteLn(Format('Minute: %d', [minute]));
  WriteLn(Format('Second: %d', [second]));
  WriteLn(Format('Centisecond: %d', [centisecond]));

  if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_MONDAY) then begin
    WriteLn('Weekday: Monday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_TUESDAY) then begin
    WriteLn('Weekday: Tuesday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_WEDNESDAY) then begin
    WriteLn('Weekday: Wednesday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_THURSDAY) then begin
    WriteLn('Weekday: Thursday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_FRIDAY) then begin
    WriteLn('Weekday: Friday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SATURDAY) then begin
    WriteLn('Weekday: Saturday');
  end
  else if (weekday = BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SUNDAY) then begin
    WriteLn('Weekday: Sunday');
  end;

  WriteLn(Format('Timestamp: %d', [timestamp]));
  WriteLn('');
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  rtc := TBrickletRealTimeClock.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { Register date and time callback to procedure DateTimeCB }
  rtc.OnDateTime := {$ifdef FPC}@{$endif}DateTimeCB;

  { Set period for date and time callback to 5s (5000ms)
    Note: The date and time callback is only called every 5 seconds
          if the date and time has changed since the last call! }
  rtc.SetDateTimeCallbackPeriod(5000);

  WriteLn('Press key to exit');
  ReadLn;
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

API

Since Delphi does not support multiple return values directly, we use the out keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

constructor TBrickletRealTimeClock.Create(const uid: string; ipcon: TIPConnection)
Parameters:
  • uid – Type: string
  • ipcon – Type: TIPConnection
Returns:
  • realTimeClock – Type: TBrickletRealTimeClock

Creates an object with the unique device ID uid:

realTimeClock := TBrickletRealTimeClock.Create('YOUR_DEVICE_UID', ipcon);

This object can then be used after the IP Connection is connected.

procedure TBrickletRealTimeClock.SetDateTime(const year: word; const month: byte; const day: byte; const hour: byte; const minute: byte; const second: byte; const centisecond: byte; const weekday: byte)
Parameters:
  • year – Type: word, Range: [2000 to 2099]
  • month – Type: byte, Range: [1 to 12]
  • day – Type: byte, Range: [1 to 31]
  • hour – Type: byte, Range: [0 to 23]
  • minute – Type: byte, Range: [0 to 59]
  • second – Type: byte, Range: [0 to 59]
  • centisecond – Type: byte, Range: [0 to 99]
  • weekday – Type: byte, Range: See constants

Sets the current date (including weekday) and the current time.

If the backup battery is installed then the real-time clock keeps date and time even if the Bricklet is not powered by a Brick.

The real-time clock handles leap year and inserts the 29th of February accordingly. But leap seconds, time zones and daylight saving time are not handled.

The following constants are available for this function:

For weekday:

  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_MONDAY = 1
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_TUESDAY = 2
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_WEDNESDAY = 3
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_THURSDAY = 4
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_FRIDAY = 5
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SATURDAY = 6
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SUNDAY = 7
procedure TBrickletRealTimeClock.GetDateTime(out year: word; out month: byte; out day: byte; out hour: byte; out minute: byte; out second: byte; out centisecond: byte; out weekday: byte)
Output Parameters:
  • year – Type: word, Range: [2000 to 2099]
  • month – Type: byte, Range: [1 to 12]
  • day – Type: byte, Range: [1 to 31]
  • hour – Type: byte, Range: [0 to 23]
  • minute – Type: byte, Range: [0 to 59]
  • second – Type: byte, Range: [0 to 59]
  • centisecond – Type: byte, Range: [0 to 99]
  • weekday – Type: byte, Range: See constants

Returns the current date (including weekday) and the current time of the real-time clock.

The following constants are available for this function:

For weekday:

  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_MONDAY = 1
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_TUESDAY = 2
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_WEDNESDAY = 3
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_THURSDAY = 4
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_FRIDAY = 5
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SATURDAY = 6
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SUNDAY = 7
function TBrickletRealTimeClock.GetTimestamp: int64
Returns:
  • timestamp – Type: int64, Unit: 1 ms, Range: [-263 to 263 - 1]

Returns the current date and the time of the real-time clock. The timestamp has an effective resolution of hundredths of a second and is an offset to 2000-01-01 00:00:00.000.

Advanced Functions

procedure TBrickletRealTimeClock.SetOffset(const offset: shortint)
Parameters:
  • offset – Type: shortint, Unit: 217/100 ppm, Range: [-128 to 127]

Sets the offset the real-time clock should compensate for in 2.17 ppm steps between -277.76 ppm (-128) and +275.59 ppm (127).

The real-time clock time can deviate from the actual time due to the frequency deviation of its 32.768 kHz crystal. Even without compensation (factory default) the resulting time deviation should be at most ±20 ppm (±52.6 seconds per month).

This deviation can be calculated by comparing the same duration measured by the real-time clock (rtc_duration) an accurate reference clock (ref_duration).

For best results the configured offset should be set to 0 ppm first and then a duration of at least 6 hours should be measured.

The new offset (new_offset) can be calculated from the currently configured offset (current_offset) and the measured durations as follow:

new_offset = current_offset - round(1000000 * (rtc_duration - ref_duration) / rtc_duration / 2.17)

If you want to calculate the offset, then we recommend using the calibration dialog in Brick Viewer, instead of doing it manually.

The offset is saved in the EEPROM of the Bricklet and only needs to be configured once.

function TBrickletRealTimeClock.GetOffset: shortint
Returns:
  • offset – Type: shortint, Unit: 217/100 ppm, Range: [-128 to 127]

Returns the offset as set by SetOffset.

procedure TBrickletRealTimeClock.GetIdentity(out uid: string; out connectedUid: string; out position: char; out hardwareVersion: array [0..2] of byte; out firmwareVersion: array [0..2] of byte; out deviceIdentifier: word)
Output Parameters:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • firmwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • deviceIdentifier – Type: word, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

procedure TBrickletRealTimeClock.SetDateTimeCallbackPeriod(const period: longword)
Parameters:
  • period – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the OnDateTime callback is triggered periodically. A value of 0 turns the callback off.

The OnDateTime Callback is only triggered if the date or time changed since the last triggering.

New in version 2.0.1 (Plugin).

function TBrickletRealTimeClock.GetDateTimeCallbackPeriod: longword
Returns:
  • period – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetDateTimeCallbackPeriod.

New in version 2.0.1 (Plugin).

procedure TBrickletRealTimeClock.SetAlarm(const month: shortint; const day: shortint; const hour: shortint; const minute: shortint; const second: shortint; const weekday: shortint; const interval: longint)
Parameters:
  • month – Type: shortint, Range: [-1, 1 to 12] with constants
  • day – Type: shortint, Range: [-1, 1 to 31] with constants
  • hour – Type: shortint, Range: [-1, 0 to 23] with constants
  • minute – Type: shortint, Range: [-1, 0 to 59] with constants
  • second – Type: shortint, Range: [-1, 0 to 59] with constants
  • weekday – Type: shortint, Range: [-1, 1 to 7] with constants
  • interval – Type: longint, Unit: 1 s, Range: [-1, 1 to 231 - 1] with constants

Configures a repeatable alarm. The OnAlarm callback is triggered if the current date and time matches the configured alarm.

Setting a parameter to -1 means that it should be disabled and doesn't take part in the match. Setting all parameters to -1 disables the alarm completely.

For example, to make the alarm trigger every day at 7:30 AM it can be configured as (-1, -1, 7, 30, -1, -1, -1). The hour is set to match 7 and the minute is set to match 30. The alarm is triggered if all enabled parameters match.

The interval has a special role. It allows to make the alarm reconfigure itself. This is useful if you need a repeated alarm that cannot be expressed by matching the current date and time. For example, to make the alarm trigger every 23 seconds it can be configured as (-1, -1, -1, -1, -1, -1, 23). Internally the Bricklet will take the current date and time, add 23 seconds to it and set the result as its alarm. The first alarm will be triggered 23 seconds after the call. Because the interval is not -1, the Bricklet will do the same again internally, take the current date and time, add 23 seconds to it and set that as its alarm. This results in a repeated alarm that triggers every 23 seconds.

The interval can also be used in combination with the other parameters. For example, configuring the alarm as (-1, -1, 7, 30, -1, -1, 300) results in an alarm that triggers every day at 7:30 AM and is then repeated every 5 minutes.

The following constants are available for this function:

For month:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For day:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For hour:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For minute:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For second:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For weekday:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For interval:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_INTERVAL_DISABLED = -1

New in version 2.0.1 (Plugin).

procedure TBrickletRealTimeClock.GetAlarm(out month: shortint; out day: shortint; out hour: shortint; out minute: shortint; out second: shortint; out weekday: shortint; out interval: longint)
Output Parameters:
  • month – Type: shortint, Range: [-1, 1 to 12] with constants
  • day – Type: shortint, Range: [-1, 1 to 31] with constants
  • hour – Type: shortint, Range: [-1, 0 to 23] with constants
  • minute – Type: shortint, Range: [-1, 0 to 59] with constants
  • second – Type: shortint, Range: [-1, 0 to 59] with constants
  • weekday – Type: shortint, Range: [-1, 1 to 7] with constants
  • interval – Type: longint, Unit: 1 s, Range: [-1, 1 to 231 - 1] with constants

Returns the alarm configuration as set by SetAlarm.

The following constants are available for this function:

For month:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For day:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For hour:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For minute:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For second:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For weekday:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_MATCH_DISABLED = -1

For interval:

  • BRICKLET_REAL_TIME_CLOCK_ALARM_INTERVAL_DISABLED = -1

New in version 2.0.1 (Plugin).

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

procedure TExample.MyCallback(sender: TBrickletRealTimeClock; const value: longint);
begin
  WriteLn(Format('Value: %d', [value]));
end;

realTimeClock.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;

The available callback properties and their parameter types are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

property TBrickletRealTimeClock.OnDateTime
procedure(sender: TBrickletRealTimeClock; const year: word; const month: byte; const day: byte; const hour: byte; const minute: byte; const second: byte; const centisecond: byte; const weekday: byte; const timestamp: int64) of object;
Callback Parameters:
  • sender – Type: TBrickletRealTimeClock
  • year – Type: word, Range: [2000 to 2099]
  • month – Type: byte, Range: [1 to 12]
  • day – Type: byte, Range: [1 to 31]
  • hour – Type: byte, Range: [0 to 23]
  • minute – Type: byte, Range: [0 to 59]
  • second – Type: byte, Range: [0 to 59]
  • centisecond – Type: byte, Range: [0 to 99]
  • weekday – Type: byte, Range: See constants
  • timestamp – Type: int64, Unit: 1 ms, Range: [-263 to 263 - 1]

This callback is triggered periodically with the period that is set by SetDateTimeCallbackPeriod. The parameters are the same as for GetDateTime and GetTimestamp combined.

The OnDateTime callback is only triggered if the date or time changed since the last triggering.

The following constants are available for this function:

For weekday:

  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_MONDAY = 1
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_TUESDAY = 2
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_WEDNESDAY = 3
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_THURSDAY = 4
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_FRIDAY = 5
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SATURDAY = 6
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SUNDAY = 7

New in version 2.0.1 (Plugin).

property TBrickletRealTimeClock.OnAlarm
procedure(sender: TBrickletRealTimeClock; const year: word; const month: byte; const day: byte; const hour: byte; const minute: byte; const second: byte; const centisecond: byte; const weekday: byte; const timestamp: int64) of object;
Callback Parameters:
  • sender – Type: TBrickletRealTimeClock
  • year – Type: word, Range: [2000 to 2099]
  • month – Type: byte, Range: [1 to 12]
  • day – Type: byte, Range: [1 to 31]
  • hour – Type: byte, Range: [0 to 23]
  • minute – Type: byte, Range: [0 to 59]
  • second – Type: byte, Range: [0 to 59]
  • centisecond – Type: byte, Range: [0 to 99]
  • weekday – Type: byte, Range: See constants
  • timestamp – Type: int64, Unit: 1 ms, Range: [-263 to 263 - 1]

This callback is triggered every time the current date and time matches the configured alarm (see SetAlarm). The parameters are the same as for GetDateTime and GetTimestamp combined.

The following constants are available for this function:

For weekday:

  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_MONDAY = 1
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_TUESDAY = 2
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_WEDNESDAY = 3
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_THURSDAY = 4
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_FRIDAY = 5
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SATURDAY = 6
  • BRICKLET_REAL_TIME_CLOCK_WEEKDAY_SUNDAY = 7

New in version 2.0.1 (Plugin).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

function TBrickletRealTimeClock.GetAPIVersion: array [0..2] of byte
Output Parameters:
  • apiVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

function TBrickletRealTimeClock.GetResponseExpected(const functionId: byte): boolean
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected. For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_DATE_TIME = 1
  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_OFFSET = 4
  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_DATE_TIME_CALLBACK_PERIOD = 6
  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_ALARM = 8
procedure TBrickletRealTimeClock.SetResponseExpected(const functionId: byte; const responseExpected: boolean)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_DATE_TIME = 1
  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_OFFSET = 4
  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_DATE_TIME_CALLBACK_PERIOD = 6
  • BRICKLET_REAL_TIME_CLOCK_FUNCTION_SET_ALARM = 8
procedure TBrickletRealTimeClock.SetResponseExpectedAll(const responseExpected: boolean)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Constants

const BRICKLET_REAL_TIME_CLOCK_DEVICE_IDENTIFIER

This constant is used to identify a Real-Time Clock Bricklet.

The GetIdentity function and the TIPConnection.OnEnumerate callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

const BRICKLET_REAL_TIME_CLOCK_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Real-Time Clock Bricklet.